全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

表面粗糙度对印刷电路板式换热器扩散焊接的影响研究
Research on the Effect of Roughness on Diffusion Bonding of Printed Circuit Heat Exchanger

DOI: 10.12677/MEng.2022.92018, PP. 140-147

Keywords: 印刷电路板式换热器,扩散焊接,316L不锈钢,粗糙度
PCHE
, Diffusion Bonding, 316L Stainless Steel, Roughness

Full-Text   Cite this paper   Add to My Lib

Abstract:

印刷电路板式换热器的换热芯体是通过换热板片堆叠后真空扩散焊接而成,表面粗糙度是影响换热芯体扩散焊接性能的关键因素之一,本文以316L材料为试验对象开展试验分析研究,重点研究了板片表面粗糙度对换热器芯体扩散焊性能的影响规律,从抗拉强度和接头金相组织两个方面阐述了316L板片表面粗糙度对扩散焊接的影响情况,结果表明,随着板片表面粗糙度的减小,其扩散焊接性能逐渐提高,只有当316L板片表面粗糙度小于0.1时,其换热芯体的焊接性能方可满足印刷电路板式换热器的使用要求。
The heat exchange core of the printed circuit heat exchanger (PCHE) is formed by vacuum diffusion bonding after the heat exchange plates are stacked, and the surface roughness is one of the key factors that affect the diffusion bonding performance of the heat exchange core. In this paper, the 316L material is taken as the test object to carry out the experimental analysis and research, and the emphasis is put on the influence of the plate surface roughness on the diffusion bonding performance of the heat exchanger core. The influence of 316L plate surface roughness on diffusion bonding is described from the aspects of tensile strength and joint microstructure. The results show that the performance of diffusion bonding is improved gradually with the decrease of plate surface roughness. Only when the 316L plate surface roughness is less than 0.1, the performance of the heat exchange core can meet the requirements of the PCHE.

References

[1]  Aneesh, A.M., Sharma, A., Srivastava, A. and Chaudhury, P. (2018) Effects of Wavy Channel Configurations on Thermal-Hydraulic Characteristics of Printed Circuit Heat Exchanger (PCHE). International Journal of Heat and Mass Transfer, 118, 304-315.
https://doi.org/10.1016/j.ijheatmasstransfer.2017.10.111
[2]  Cui, X.Y., Guo, J.F., Huai, X.L., Cheng, K., Zhang, H. and Xiang, M. (2018) Numerical Study on Novel Airfoil Fins for Printed Circuit Heat Exchanger Using Supercritical CO2. International Journal of Heat and Mass Transfer, 121, 354-366.
https://doi.org/10.1016/j.ijheatmasstransfer.2018.01.015
[3]  Ahn, Y., Bae, S.J., Kim, M., Cho, S.K., Baik, S., Lee, J.I., et al. (2015) Review of Supercritical CO2 Power Cycle Technology and Current Status of Research and Development. Nuclear Engineering and Technology, 47, 647-651.
https://doi.org/10.1016/j.net.2015.06.009
[4]  Chen, F., Zhang, L.S., Huai, X.L., Li, J., Zhang, H. and Liu, Z. (2017) Comprehensive Performance Comparison of Airfoil Fin PCHEs with NACA 00XX Series Airfoil. Nuclear Engineering and Design, 315, 42-50.
https://doi.org/10.1016/j.nucengdes.2017.02.014
[5]  Halimi, B. and Suh, K.Y. (2012) Computational Analysis of Supercritical CO2 Brayton Cycle Power Conversion System for Fusion Reactor. Energy Conversion and Management, 63, 38-43.
https://doi.org/10.1016/j.enconman.2012.01.028
[6]  Jeon, S., Baik, Y.J., Chan, B. and Kim, W. (2016) Thermal Performance of Heterogeneous PCHE for Supercritical CO2 Energy Cycle. International Journal of Heat and Mass Transfer, 102, 867-876.
https://doi.org/10.1016/j.ijheatmasstransfer.2016.06.091
[7]  Kim, W., Baik, Y.J., Jeon, S., Jeon, D. and Byon, C. (2017) A Mathematical Correlation for Predicting the Thermal Performance of Cross, Parallel, and Counterflow PCHEs. International Journal of Heat and Mass Transfer, 106, 1294-1302.
https://doi.org/10.1016/j.ijheatmasstransfer.2016.10.110
[8]  Southall, D. and Dewson, S.J. (2010) Innovative Compact Heat Exchangers. 2010 International Congress on Advances in Nuclear Power Plants, San Diego, 13-17 June 2010, 218-224.
[9]  Figley, J., Sun, X.D., Mylavarapu, S.K. and Hajek, B. (2013) Numerical Study on Thermal Hydraulic Performance of a Printed Circuit Heat Exchanger. Progress in Nuclear Energy, 68, 89-96.
https://doi.org/10.1016/j.pnucene.2013.05.003
[10]  Xu, X.Y., Ma, T., Li, L., Zeng, M., Chen, Y., Huang, Y., et al. (2014) Optimization of Fin Arrangement and Channel Configuration in an Airfoil Fin PCHE for Supercritical CO2 Cycle. Applied Thermal Engineering, 70, 867-875.
https://doi.org/10.1016/j.applthermaleng.2014.05.040
[11]  Baek, S., Kim, J.H., Jeong, S. and Jung, J. (2012) Development of Highly Effective Cryogenic Printed Circuit Heat Exchanger (PCHE) with Low Axial Conduction. Cryogenics, 52, 366-374.
https://doi.org/10.1016/j.cryogenics.2012.03.001
[12]  Sung, J. and Lee, J.Y. (2017) Effect of Tangled Channels on the Heat Transfer in a Printed Circuit Heat Exchanger. International Journal of Heat and Mass Transfer, 115, 647-656.
https://doi.org/10.1016/j.ijheatmasstransfer.2017.07.091
[13]  Mylavarapu, S.K., Sun, X., Glosup, R.E., Christensen, R.N. and Patterson, M.W. (2014) Thermal Hydraulic Performance Testing of Printed Circuit Heat Exchangers in a High-Temperature Helium Test Facility. Applied Thermal Engineering, 65, 605-614.
https://doi.org/10.1016/j.applthermaleng.2014.01.025
[14]  安子良, 轩福贞, 涂善东. 316L不锈钢扩散焊接头的微观结构和力学性能[J]. 中国有色金属学报, 2006, 16(10): 1765-1770.
[15]  黄毓晖, 杨博, 轩福贞, 涂善东. 316L不锈钢扩散焊接头在酸性氯化钠溶液中的应力腐蚀行为[J]. 焊接学报, 2011, 32(7): 67-70.
[16]  李淑欣, 轩福贞, 涂善东, 俞树荣. 316L不锈钢扩散连接接头界面疲劳裂纹扩展行为[J]. 材料科学与工艺, 2010, 18(1): 141-144.
[17]  李振鸿, 沈书乾. 316L不锈钢扩散焊接头的显微拉伸性能[J]. 石油和化工设备, 2008, 11(2): 10-11.
[18]  安子良, 轩福贞, 涂善东. 316L不锈钢扩散焊接头界面孔洞蠕变扩展研究[J]. 中国测试, 2014, 40(5): 21-24.
[19]  彭成章, 陈安华, 王文明. 分层实体制造中金属层片连接的扩散焊接工艺[J]. 矿冶工程, 2005, 25(4): 86-88.
[20]  李秋龙, 徐哲, 郭继冠, 刘向前, 李培跃, 郁炎. 板片表面缺陷尺度对印刷电路板式换热器扩散焊接的影响研究[J]. 材料开发与应用, 2021, 36(3): 74-78.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413