全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

可见光波段宽带增透光学膜的研究
Study on Broadband Antireflection Optical Film in Visible Band

DOI: 10.12677/MP.2022.124010, PP. 97-107

Keywords: 增透膜,光谱曲线,平均透过率,薄膜镀制,AR Coating, Spectral Curve, Average Transmittance, Thin Film Plating

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文提出一种基于不同实验条件下的镀膜研究方法,设计了可见光波段宽带增透膜。选择TiO2和MgF2为镀膜材料,通过TFCalc软件设计了380 nm~780 nm波段宽带增透膜(AR膜),并通过模拟仿真实验分析得到单层TiO2、MgF2薄膜各波段的折射率,以及不同中心波长、单层材料折射率误差和厚度误差、入射角变化对可见光波段宽带AR膜平均透过率(AT)的影响。结果表明:中心波长为610 nm,入射角小于50?,TiO2折射率偏差在?0.2~0,厚度偏差在?10~0 nm,MgF2折射率偏差在?0.1~0.1,厚度在?5 nm~5 nm之间变化时,可实现全波段平均透过率超过96%,为光学薄膜的研究提供了一种可参考的研究途径。
In this paper, a coating research method based on different experimental conditions is proposed, and a broadband antireflection film in visible light band is designed. TiO2 and MgF2 were selected as coating materials. The broadband antireflection film (AR film) in 380 nm~780 nm band was designed by TFCalc software. The refractive index of each band of single-layer TiO2 and MgF2 film, as well as the effects of different central wavelengths, refractive index error and thickness error of single-layer material and incident angle on the average transmittance (AT) of broadband AR film in visible band were analyzed through simulation experiments. The results show that when the central wavelength is 610nm, the incident angle is less than 50?, the refractive index deviation of TiO2 is ?0.2~0, the thickness deviation is ?10~0 nm, the refractive index deviation of MgF2 is ?0.1~0.1, and the thickness changes between ?5 nm~5 nm, the full band average transmittance can be more than 96%, which provides a reference research way for the research of optical films.

References

[1]  罗小兰. TiO2系光学减反膜的设计与制备[D]: [硕士学位论文]. 长沙: 湖南大学, 2011: 103-112.
[2]  唐亚陆, 胡光, 等. 增透膜反射率与膜层折射率及膜厚之间的关系[J]. 淮阴工学院学报, 2008, 17(3): 86-88.
[3]  Schr?der, S., Trost, M., Garrick, M., et al. (2015) Origins of Light Scattering from Thin Film Coatings. Thin Solid Films, 592, 248-255.
https://doi.org/10.1016/j.tsf.2015.02.077
[4]  兰慧琴. 基于周期结构模型的光学薄膜折射率研究[J]. 青年与社会, 2019(24): 207-208.
[5]  杨秀琴, 陈金桂, 等. 光伏增透膜折射率对膜层性能影响的研究[J]. 全国性建材科技期刊. 2020, 47(8): 45-48.
[6]  Pan, L., et al. (2021) Translation Matching Method for Obtaining the Re-fractive Index of Chalcogenide Films Based on the Transmission Spectra. IEEE Transactions on Instrumentation and Measurement, 70, 69-71.
https://doi.org/10.1109/TIM.2021.3088483
[7]  徐万劲. 磁控溅射技术进展及应用[J]. 现代仪器, 2005, 11(5): 1-5.
[8]  周娟, 郭宪英, 等. 自清洁TiO2薄膜的制备与表征[J]. 现代涂料与涂装, 2009, 12(2): 6-10.
[9]  Asahi, R., Morikawa, T., Ohwaki, T., et al. (2001) Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides. Science, 293, 269-271.
https://doi.org/10.1126/science.1061051
[10]  Lettmann, C., Hildenbrand, K., Kisch, H., et al. (2001) Visible Light Photodegradation of 4-Chlorophenol with a Coke-Containing Titanium Dioxide Photocatalyst. Applied Ca-talysis B: Environmental, 32, 215-227.
https://doi.org/10.1016/S0926-3373(01)00141-2
[11]  Khan, S.U.M., Al-Shahry, M., Ingler, W.B., et al. (2002) Ef-ficient Photochemical Water Splitting by a Chemically Modified n-TiO2. Science, 297, 2243-2245.
https://doi.org/10.1126/science.1075035
[12]  陈崧哲, 张彭仪, 祝万鹏, 等. 可见光响应光催化剂研究进展[J]. 化学进展, 2004, 16(4): 613-619.
[13]  俞守耕. 钙钛矿型氧化物在净化汽车尾气催化剂中的应用[J]. 贵金属, 2001, 22(2): 61-66.
[14]  Kaiser, N., Anton, B., Jaenchen, H., et al. (1995) Laser Conditioning of LaF3/MgF2 Dielectric Coat-ings for Excimer Lasers. Proceedings of SPIE, 2428, 400-409.
[15]  Dijon, J., Quesnel, E., Rolland, B., et al. (1998) High Damage Threshold Fluoride UV Mirrors Made by Ion Beam Sputtering. Proceedings of SPIE, 3244, 406-416.
https://doi.org/10.1117/12.306989
[16]  Protopapa, M.L., Perrone, M.R., Piegari, A.M., et al. (2000) Laser Damage Threshold of MgF2 Thin Films by Photoacoustic Beam Deflection. Proceedings of SPIE, 3902, 175-181.
https://doi.org/10.1117/12.379303
[17]  Protopapa, M.L., De Tomasi, F., Perrone, M.R., et al. (2001) Laser Dam-age Studies on MgF2 Thin Films. Journal of Vacuum Science & Technology, 19, 681-688.
https://doi.org/10.1116/1.1347049
[18]  Yoshida, K., Ohya, M., Atooka, K., et al. (2002) Optical Properties of Po-rous Fluoride Coatings for UV and DUV Lasers. Proceedings of SPIE, 4679, 429-434.
https://doi.org/10.1117/12.461692
[19]  Ristau, D., Gunster, S., Bosch, S., et al. (2002) Ultraviolet Optical and Mi-crostructural Properties of MgF2 and LaF3 Coatings Deposited by Ion-Beam Sputtering and Boat and Electron-Beam Evaporation. Applied Optics, 41, 3196-3204.
https://doi.org/10.1364/AO.41.003196
[20]  唐晋必, 顾培夫, 刘旭, 等. 现代光学薄膜技术[M]. 杭州: 浙江大学出版社, 2006: 81-83.
[21]  Willry, R.R. (1993) Predicting Achievable Design Performance of Broadband Antireflec-tion Coatings. Applied Optics, 32, 5447-5451.
https://doi.org/10.1364/AO.32.005447
[22]  Baumeister, P. (1995) Staring Designs for the Computer Optimization of Optical Coatings. Applied Optics, 34, 4835- 4843.
https://doi.org/10.1364/AO.34.004835

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413