全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

MOFs衍生多孔材料的研究进展
Research Progress of MOFs-Derived Porous Materials

DOI: 10.12677/AMC.2022.103008, PP. 53-60

Keywords: 金属有机骨架,MOFs衍生材料,合成策略,催化应用
Metal Organic Framework
, MOFs-Derived Materials, Synthetic Strategies, Catalytic Applications

Full-Text   Cite this paper   Add to My Lib

Abstract:

金属有机骨架(MOFs)材料是由金属离子或团簇与有机配体构成晶态多孔材料,常被用作前驱体来衍生具有高比表面积、高孔隙率、孔径可调、高导电性和稳定性等优异性能的衍生多孔材料。本文论述了直接热解、共裂解、复合材料热解和溶液掺入后热处理四种不同制备MOFs衍生材料的策略以及MOFs衍生材料在有机催化、光催化和电催化中的潜在应用。
Metal organic framework (MOFs) materials are crystalline porous materials composed of metal ions or clusters and organic ligands, which are often used as precursors to derive derived-porous materials with high specific surface area, high porosity, adjustable pore size, high electrical conductivity and stability. In this paper, four different strategies for the preparation of MOFs derived materials, including direct pyrolysis, co-pyrolysis, composite pyrolysis and solution infiltration method followed by heat treatment, and the potential applications of MOFs derived materials in organic catalysis, photocatalysis and electrocatalysis are discussed.

References

[1]  Muhammad, R., Jee, S., Jung, M., et al. (2021) Exploiting the Specific Isotope-Selective Adsorption of Metal-Organic Framework for Hydrogen Isotope Separation. Journal of the American Chemical Society, 143, 8232-8236.
https://doi.org/10.1021/jacs.1c01694
[2]  Cong, S., Yuan, Y., Wang, J., et al. (2021) Highly Water-Permeable Metal-Organic Framework MOF-303 Membranes for Desalination. Journal of the American Chemical Society, 143, 20055-20058.
https://doi.org/10.1021/jacs.1c10192
[3]  Sun, J.K. and Xu, Q. (2014) Functional Materials Derived from Open Framework Templates/Precursors: Synthesis and Applications. Energy & Environmental Science, 7, 2071-2100.
https://doi.org/10.1039/c4ee00517a
[4]  Yang, Q., Xu, Q. and Jiang, H.L. (2017) Metal-Organic Frameworks Meet Metal Nanoparticles: Synergistic Effect for Enhanced Catalysis. Chemical Society Reviews, 46, 4774-4808.
https://doi.org/10.1039/C6CS00724D
[5]  Lai, Y., Gan, Y., Zhang, Z., et al. (2014) Metal-Organic Frameworks-Derived Mesoporous Carbon for High Performance Lithium-Selenium Battery. Electrochimica Acta, 146, 134-141.
https://doi.org/10.1016/j.electacta.2014.09.045
[6]  Liu, B., Shioyama, H., Akita, T., et al. (2008) Metal-Organic Framework as a Template for Porous Carbon Synthesis. Journal of the American Chemical Society, 130, 5390-5391.
https://doi.org/10.1021/ja7106146
[7]  Wang, H.F., Chen, L., Pang, H., et al. (2020) MOF-Derived Electrocatalysts for Oxygen Reduction, Oxygen Evolution and Hydrogen Evolution Reactions. Chemical Society Reviews, 49, 1414-1448.
https://doi.org/10.1039/C9CS00906J
[8]  Lux, L., Williams, K. and Ma, S. (2015) Heat-Treatment of Metal-Organic Frameworks for Green Energy Applications. CrystEngComm, 17, 10-22.
https://doi.org/10.1039/C4CE01499E
[9]  Song, Z., Cheng, N., Lushington, A., et al. (2016) Recent Progress on MOF-Derived Nanomaterials as Advanced Electrocatalysts in Fuel Cells. Catalysts, 6, Article No. 116.
https://doi.org/10.3390/catal6080116
[10]  Peera, S.G., Balamurugan, J., Kim, N.H., et al. (2018) Sustainable Synthesis of Co@NC Core Shell Nanostructures from Metal Organic Frameworks via Mechanochemical Coordination Self-Assembly: An Efficient Electrocatalyst for Oxygen Reduction Reaction. Small, 14, Article ID: 1800441.
https://doi.org/10.1002/smll.201800441
[11]  Liang, Z., Qu, C., Guo, W., et al. (2018) Pristine Metal-Organic Frameworks and their Composites for Energy Storage and Conversion. Advanced Materials, 30, Article ID: 1702891.
https://doi.org/10.1002/adma.201702891
[12]  Wu, H.B. and Lou, X.W. (2017) Metal-Organic Frameworks and Their Derived Materials for Electrochemical Energy Storage and Conversion: Promises and Challenges. Science Advances, 3, 9252.
https://doi.org/10.1126/sciadv.aap9252
[13]  Ma, S., Goenaga, G.A., Call, A.V., et al. (2011) Cobalt Imidazolate Framework as Precursor for Oxygen Reduction Reaction Electrocatalysts. Chemistry—A European Journal, 17, 2063-2067.
https://doi.org/10.1002/chem.201003080
[14]  Wang, X. and Li, Y. (2016) Nanoporous Carbons Derived from MOFs as Metal-Free Catalysts for Selective Aerobic Oxidations. Journal of Materials Chemistry A, 4, 5247-5257.
https://doi.org/10.1039/C6TA00324A
[15]  Liu, B., Shioyama, H., Jiang, H., et al. (2010) Metal-Organic Framework (MOF) as a Template for Syntheses of Nanoporous Carbons as Electrode Materials for Supercapacitor. Carbon, 48, 456-463.
https://doi.org/10.1016/j.carbon.2009.09.061
[16]  Wang, M., Zhang, J., Yi, X., et al. (2020) Nitrogen-Doped Hierarchical Porous Carbon Derived from ZIF-8 Supported on Carbon Aerogels with Advanced Performance for Supercapacitor. Applied Surface Science, 507, Article ID: 145166.
https://doi.org/10.1016/j.apsusc.2019.145166
[17]  Zhang, Y., Wang, P., Yang, J., et al. (2021) Decorating ZIF-67-Derived Cobalt-Nitrogen Doped Carbon Nanocapsules on 3D Carbon Frameworks for Efficient Oxygen Reduction and Oxygen Evolution. Carbon, 177, 344-356.
https://doi.org/10.1016/j.carbon.2021.02.052
[18]  Jiang, Z., Sun, H., Qin, Z., et al. (2012) Synthesis of Novel ZnS Nanocages Utilizing ZIF-8 Polyhedral Template. Chemical Communications, 48, 3620-3622.
https://doi.org/10.1039/c2cc00004k
[19]  Li, J., Yan, D., Zhang, X., et al. (2017) ZnS Nanoparticles Decorated on Nitrogen-Doped Porous Carbon Polyhedra: A Promising Anode Material for Lithium-Ion and Sodium-Ion Batteries. Journal of Materials Chemistry A, 5, 20428-20438.
https://doi.org/10.1039/C7TA06180C
[20]  Song, H., Wang, N., Meng, H., et al. (2020) A Facile Synthesis of a ZIF-Derived ZnS/ZnIn2S4 Heterojunction and Enhanced Photocatalytic Hydrogen Evolution. Dalton Transactions, 49, 10816-10823.
https://doi.org/10.1039/D0DT02141E
[21]  Liu, D., Li, M., Li, X., et al. (2020) Core-Shell Zn/Co MOFs Derived Co3O4/CNTs as an Efficient Magnetic Heterogeneous Catalyst for Persulfate Activation and Oxytetracycline Degradation. Chemical Engineering Journal, 387, Article ID: 124008.
https://doi.org/10.1016/j.cej.2019.124008
[22]  Gong, Y., Zhao, X., Zhang, H., et al. (2018) MOF-Derived Nitrogen Doped Carbon Modified g-C3N4 Heterostructure Composite with Enhanced Photocatalytic Activity for Bisphenol A Degradation with Peroxymonosulfate under Visible Light Irradiation. Applied Catalysis B: Environmental, 233, 35-45.
https://doi.org/10.1016/j.apcatb.2018.03.077
[23]  Qian, Y., Khan, I.A. and Zhao, D. (2017) Electrocatalysts Derived from Metal-Organic Frameworks for Oxygen Reduction and Evolution Reactions in Aqueous Media. Small, 13, Article ID: 1701143.
https://doi.org/10.1002/smll.201701143
[24]  Liu, C., Wang, Y., Zhang, Y., et al. (2018) Enhancement of Fe@porous Carbon to Be an Efficient Mediator for Peroxymonosulfate Activation for Oxidation of Organic Contaminants: Incorporation NH2-Group into Structure of Its MOF Precursor. Chemical Engineering Journal, 354, 835-848.
https://doi.org/10.1016/j.cej.2018.08.060
[25]  Zhao, Y., Zhou, H., Chen, W., et al. (2019) Two-Step Carbothermal Welding To Access Atomically Dispersed Pd1 on Three-Dimensional Zirconia Nanonet for Direct Indole Synthesis. Journal of the American Chemical Society, 141, 10590-10594.
https://doi.org/10.1021/jacs.9b03182
[26]  Zhu, P., Yin, X., Gao, X., et al. (2021) Enhanced Photocatalytic NO Removal and Toxic NO2 Production Inhibition over ZIF-8-Derived ZnO Nanoparticles with Controllable Amount of Oxygen Vacancies. Chinese Journal of Catalysis, 42, 175-183.
https://doi.org/10.1016/S1872-2067(20)63592-6
[27]  Guo, Y.N., Tang, J., Qian, H. Y., et al. (2017) One-Pot Synthesis of Zeolitic Imidazolate Framework 67-Derived Hollow Co3S4@MoS2 Heterostructures as Efficient Bifunctional Catalysts. Chemistry of Materials, 29, 5566-5573.
https://doi.org/10.1021/acs.chemmater.7b00867

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133