全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Transport in Astrophysics: II. Diffusion with Advection in Expanding Nebulae

DOI: 10.4236/ijaa.2022.123012, PP. 195-211

Keywords: Particle Diffusion, Random Walks

Full-Text   Cite this paper   Add to My Lib

Abstract:

The structure across an expanding shell in which drift and diffusion redistribute material requires careful consideration in order to correlate the surface brightness with the physical parameters. A new solution in terms of Fourier series is suggested for 1D diffusion in the presence of a drift velocity. The astrophysical parameters are chosen in agreement with the astronomical data for the planetary nebula A39. The new solution is then inserted into the existing theory for the astrophysical image which allows dealing with the intensity of radiation emitted in a spherical layer.

References

[1]  Zaninetti, L. (2009) Scaling for the Intensity of Radiation in Spherical and Aspherical Planetary Nebulae. Monthly Notices of the Royal Astronomical Society, 395, 667-691.
https://doi.org/10.1111/j.1365-2966.2009.14551.x
[2]  Mojtabi, A. and Deville, M.O. (2015) One-Dimensional Linear Advection— Diffusion Equation: Analytical and Finite Element Solutions. Computers & Fluids, 107, 189-195.
https://doi.org/10.1016/j.compfluid.2014.11.006
[3]  Liu, D. and Wang, Y. (2015) High Order Numerical Solutions to Convection Diffusion Equations with Different Approaches Journal of Applied & Computational Mathematics, 4, 208-227.
[4]  Zaninetti, L. (2007) X-Ray Profiles in Symmetric and Asymmetric Supernova Remnants. Baltic Astronomy, 16, 251-285.
[5]  Opsenica, S. and Arbutina, B. (2011) Numerical Code for Fitting Radial Emission Profile of a Shell Supernova Remnant. Application. Serbian Astronomical Journal, 183, 75-85.
https://doi.org/10.2298/SAJ1183077O
[6]  Berg, H.C. (1993) Random Walks in Biology. Princeton University Press, Princeton.
[7]  Jacoby, G.H., Ferland, G.J. and Korista, K.T. (2001) The Planetary Nebula A39: An Observational Benchmark for Numerical Modeling of Photoionized Plasmas. The Astrophysical Journal, 560, 272-286.
https://doi.org/10.1086/322489
[8]  Hippelein, H. and Weinberger, R. (1990) The Expansion of Highly Evolved Planetary Nebulae. Astronomy & Astrophysics, 232, 129-134.
[9]  Rybicki, G. and Lightman, A. (1991) Radiative Processes in Astrophysics, Wiley-Interscience, New-York.
[10]  Hjellming, R.M. (1988) Radio Stars. In: Verschuur, G.L. and Kellermann, K.I., Eds., Galactic and Extragalactic Radio Astronomy, Springer-Verlag, New York, 381-438.
https://doi.org/10.1007/978-1-4612-3936-9_9
[11]  Lang, K.R. (1999) Astrophysical Formulae. 3rd Edition, Springer-Verlag, New York.
[12]  Velázquez, P.F., Martinell, J.J., Raga, A.C. and Giacani, E.B. (2004) Effects of Thermal Conduction on the X-Ray and Synchrotron Emission from Supernova Remnants. The Astrophysical Journal, 601, 885-895.
https://doi.org/10.1086/380755
[13]  Berezhko, E.G. and Volk, H.J. (2004) The Theory of Synchrotron Emission from Supernova Remnants. Astronomy & Astrophysics, 427, 525-536. (Preprint arXiv:astro-ph/0408121).
https://doi.org/10.1051/0004-6361:20041111
[14]  Bamba, A., Yamazaki, R. and Hiraga, J.S. (2005) Chandra Observations of Galactic Supernova Remnant Vela Jr.: A New Sample of Thin Filaments Emitting Synchrotron X-Rays. The Astrophysical Journal, 632, 294-301. (Preprint arXiv:astro-ph/0506331).
https://doi.org/10.1086/432711
[15]  Cassam-Chenai, G., Decourchelle, A., Ballet, J. and Ellison, D.C. (2005) Morphology of Synchrotron Emission in Young Supernova Remnants. Astronomy & Astrophysics, 443, 955-959. (Preprint arXiv:astro-ph/0507194).
https://doi.org/10.1051/0004-6361:20052853
[16]  Bykov, A.M., Uvarov, Y.A. and Ellison, D.C. (2008) Dots, Clumps, and Filaments: The Intermittent Images of Synchrotron Emission in Random Magnetic Fields of Young Supernova Remnants. The Astrophysical Journal, 689, L133-L136. (Preprint 0811.2498).
https://doi.org/10.1086/595868
[17]  Katsuda, S., Petre, R., Mori, K., Reynolds, S.P., Long, K.S., Winkler, P.F. and Tsunemi, H. (2010) Steady X-Ray Synchrotron Emission in the Northeastern Limb of SN 1006. The Astrophysical Journal, 723, 383-392. (Preprint 1009.0280).
https://doi.org/10.1088/0004-637X/723/1/383
[18]  Cohen, M., Chapman, J.M., Deacon, R.M., Sault, R.J., Parker, Q.A. and Green, A.J. (2006) Radio Observations of the Planetary Nebula around the OH/IR Star OH354.88-0.54 (V1018 Sco). Monthly Notices of the Royal Astronomical Society, 369, 189-196. (Preprint arXiv:astro-ph/0603321).
https://doi.org/10.1111/j.1365-2966.2006.10279.x
[19]  Suárez, O., Gómez, J.F., Bendjoya, P., Miranda, L.F., Guerrero, M.A., Uscanga, L., Green, J.A., Rizzo, J.R. and Ramos-Larios, G. (2015) Time-Variable Non-Thermal Emission in the Planetary Nebula IRAS 15103-5754. The Astrophysical Journal, 806, Article No. 105 (Preprint 1504.04277).
https://doi.org/10.1088/0004-637X/806/1/105
[20]  Cerrigone, L., Umana, G., Trigilio, C., Leto, P., Buemi, C.S. and Ingallinera, A. (2017) Radio Variability and Non-Thermal Components in Stars Evolving towards Planetary Nebulae. Monthly Notices of the Royal Astronomical Society, 468, 3450-3460. (Preprint 1703. 06005).
https://doi.org/10.1093/mnras/stx690
[21]  Hajduk, M., van Hoof, P.A.M., Sniadkowska, K., Krankowski, A., Błaszkiewicz, L., Dąbrowski, B., et al. (2018) Radio Observations of Planetary Nebulae: No Evidence for Strong Radial Density Gradients. Monthly Notices of the Royal Astronomical Society, 479, 5657-5677. (Preprint 1807.01055).
https://doi.org/10.1093/mnras/sty1673
[22]  Hajduk, M., Van Hoof, P.A.M., Sniadkowska, K., Krankowski, A., Błaszkiewicz, L., Dabrowski, B., et al. (2019) Radio Continuum Spectra of Planetary Nebulae Galaxies, 7, Article No. 6.
https://www.mdpi.com/2075-4434/7/1/6

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413