全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Green Synthesis, Characterization and Photophysical Properties of Rhodamine Derivatives

DOI: 10.4236/gsc.2022.123005, PP. 57-72

Keywords: Rhodamine 6G, Microwave, Synthesis, Sensor, Absorbance, Fluorescence

Full-Text   Cite this paper   Add to My Lib

Abstract:

Rhodamine 6G-chromone-derived compounds RD1 - RD4 have been synthesized by condensation of rhodamine 6G hydrazide and substituted chromone aldehydes in ethanol using microwave-assisted reaction. The structures of these synthesized rhodamine 6G derivatives were confirmed by proton nuclear magnetic resonance (1H-NMR), carbon nuclear magnetic resonance (13C-NMR), and high-resolution mass spectra data (HRMS). Colorimetric and photophysical studies show the synthesized compounds selectively detect copper (II) ion in aqueous acetonitrile solution.

References

[1]  Beija, M., Afonso, C. and Martinho, J.M.G. (2009) Synthesis and Applications of Rhodamine Derivatives as Fluorescent Probes. Chemical Society Reviews, 38, 2410-2433.
https://doi.org/10.1039/B901612K
[2]  Goncalves, M., Dreyer, J., Lupieri, P., Patino, C., Ippoliti, E., Webb, M., Carrie, J. and Carloni, P. (2013) Structural Prediction of a Rhodamine-Based Biosensor and Comparison with Biophysical Data. Physical Chemistry Chemical Physics, 15, 2177-2183.
https://doi.org/10.1039/C2CP42396K
[3]  Zhan, T., Feng, X., Tong, B., Shi, J., Chen, L., Zhi, J. and Dong, Y. (2012) A Novel “Turn-On” Fluorescent Chemosensor for Selective Detection of Al3+ Based on Aggregation-Induced Emission. Chemical Communication, 48, 416-418.
https://doi.org/10.1039/C1CC15681K
[4]  Lohar, S., Banerjee, A., Sahana, A., Banik, A., Mukhopadhyay, S. and Das, D. (2013) A Rhodamine-Naphthalene Conjugate as a FRET Based Sensor for Cr3+ and Fe3+ with Cell Staining Application. Analytical Methods, 5, 442-445.
https://doi.org/10.1039/C2AY26224J
[5]  Weerasinghe, A., Oyeamalu, A., Abebe, F., Venter, A. and Sinn, E. (2016) Rhodamine Based Turn-On Sensors for Ni2+ and Cr3+ in Organic Media: Detecting CN- via the Metal Displacement Approach. Journal of Fluorescence, 26, 891-898.
https://doi.org/10.1007/s10895-016-1777-4
[6]  Rakeshwar, B., Anca, P., Aude, V., Ann, K., Friedhelm, S. and Kevin, B. (2006) Synthesis of a New Water-Soluble Rhodamine Derivative and Application to Protein Labeling and Intracellular Imaging. Bioconjugate Chemistry, 17, 1219-1225.
https://doi.org/10.1021/bc0601424
[7]  Hasegawa, T., Kondo, Y., Koizumib, Y., Sugiyamab, T., Takeda, A. and Ito, S. (2009) A Highly Sensitive Probe Detecting Low pH Area of HeLa Cells Based on Rhodamine B Modified β-Cyclodextrins. Bioorganic & Medicinal Chemistry, 17, 6015-6019.
https://doi.org/10.1016/j.bmc.2009.06.046
[8]  Islam, M., Chakraborty, C., Pandya, P., Masum, A., Gupta, N. and Mukhopadhyay, S. (2013) Binding of DNA with Rhodamine B: Spectroscopic and Molecular Modeling Studies. Dyes and Pigments, 99, 412-422.
https://doi.org/10.1016/j.dyepig.2013.05.028
[9]  Abebe, F., Gonzalez, J., Dennis, K.M. and Shaw, R. (2020) A New Bis(Rhodamine)-Based Colorimetric Chemosensor for Cu2+. Inorganic chemistry Communications, 120, Article ID: 108154.
https://doi.org/10.1016/j.inoche.2020.108154
[10]  Abebe, F., Perkins, P., Shaw, R. and Tadesse, S. (2020) A Rhodamine-Based Fluorescent Sensor for Selective Detection of Cu2+ in Aqueous Media: Synthesis and Spectroscopic Properties. Journal of Molecular Structure, 1205, Article ID: 127594.
https://doi.org/10.1016/j.molstruc.2019.127594
[11]  Gao, Z., Kan, C., Liu, H., Zhu, J. and Bao, X. (2019) A Highly Sensitive and Selective Fluorescent Probe for Fe3+ Containing Two Rhodamine B and Thiocarbonyl Moieties and Its Application to Live Cell Imaging. Tetrahedron, 75, 1223-1230.
https://doi.org/10.1016/j.tet.2019.01.029
[12]  Weerasinghe, A.J., Schmiesing, C. and Sinn, E. (2011) Synthesis, Characterization, and Evaluation of Rhodamine-Based Sensors for Nerve Gas Mimics. Tetrahedron, 67, 2833-2838.
https://doi.org/10.1016/j.tet.2011.02.041
[13]  Du, W., Cheng, Y., Shu, W., Wu, B., Kong, Z. and Qi, Z. (2017) The Influence of Different Substituents on Spectral Properties of Rhodamine B Based Chemosensors for Mercury Ion and Application in EC 109 Cells. Canadian Journal of Chemistry, 95, 751-757.
https://doi.org/10.1139/cjc-2017-0017
[14]  Abebe, F., Sutton, T., Perkins, P., Makins-Dennis, K. and Winstead, A. (2018) Microwave-Assisted Synthesis of Rhodamine Derivatives. Green Chemistry Letters and Reviews, 11, 237-245.
https://doi.org/10.1080/17518253.2018.1472814
[15]  Oliveira, A.S., Llanes, L., Nunes, R.J., Yunes, R.A. and Brighente, I. (2014) Use of Ultrasound and Microwave Irradiation for Clean and Efficient Synthesis of 3,3’-(Arylmethylene)bis(2-hydroxynaphthalene-1,4-dione) Derivatives. Green and Sustainable Chemistry, 4, 177-184.
https://doi.org/10.4236/gsc.2014.44023
[16]  Vahabi, V. and Hatamjafari, F. (2014) Microwave Assisted Convenient One-Pot Synthesis of Coumarin Derivatives via Pechmann Condensation Catalyzed by FeF3 under Solvent-Free Conditions and Antimicrobial Activities of the Products. Molecules, 19, 13093-13103.
[17]  Pistara, V., Rescifina, A., Chiacchio, A. and Corsaro, A. (2014) Use of Microwave Heating in the Synthesis of Heterocycles from Carbohydrates. Current Organic Chemistry, 18, 417-445.
https://doi.org/10.2174/13852728113176660146
[18]  Aduroja, O., Shaw, R. and Abebe, F. (2022) A Bis(Rhodamine 6G)-Based Fluorescent Sensor for Hg2+: Microwave-Assisted Synthesis, Photophysical, Properties, and Computational Studies. Research on Chemical Intermediate, 48, 1847-1861.
https://doi.org/10.1007/s11164-022-04704-x
[19]  Zhai, Y., Huang, M., Jiang, L. and Liao, H. (2021) Ratiometric Fluorescence Detection of 6-Mercaptopurine Based on the Nanohybrid of Fluorescence Carbon Dots and Gold Nanoclusters. Journal of Sensor Technology, 11, 39-53.
https://doi.org/10.4236/jst.2021.113003
[20]  Zhang, C., Li, T., Yuan, Y., Gu, C., Niu, M. and Cao, H. (2017) Effect of Bromine Substituent on Optical Properties of Aryl Compounds. Journal of Physical Organic Chemistry, 30, e3620.
https://doi.org/10.1002/poc.3620
[21]  Martynov, I., Barachersky, V., Ayt, A., Kobeleva, O., Valova, T., Levchenko, K., Yarovenko, V. and Krauvshkin, M. (2014) Fluorescence Properties of Light-Sensitive Chromone Used in Archival Polymer Recording Media. Optical Materials, 37, 488-492.
https://doi.org/10.1016/j.optmat.2014.07.011
[22]  Czaplyski, W., Purnell, G., Roberts, C., Allred, R. and Harbron, E. (2014) Substituent Effects on the Turn-On Kinetics of Rhodamine-Based Fluorescent pH Probes. Organic and Biomolecular Chemistry, 12, 526-533.
https://doi.org/10.1039/C3OB42089B
[23]  Stratton, S., Taumoefolau, G., Purnell, G., Rasooly, M., Czaplyski, W. and Harbron, E. (2017) Turning the pKa of Fluorescent Rhodamine pH Probes through Substituent Effects. Chemistry, 23, 14064-14072.
https://doi.org/10.1002/chem.201703176
[24]  Maedaa, H., Uenoa, R., Furuyamaa, T. and Segia, M. (2020) Effects of Substituents on Absorption and Fluorescence Properties of Trimethylsilylethynyl- and Tert-Butylethynyl-Pyrenes. Journal of Photochemistry and Photobiology A: Chemistry, 392, Article ID: 112428.
https://doi.org/10.1016/j.jphotochem.2020.112428
[25]  Abou-Hatab, S., Spata, V. and Matsika, S. (2017) Substituent Effects on the Absorption and Fluorescence Properties of Anthracene. Journal of Physical Chemistry A, 121, 1213-1222.
https://doi.org/10.1021/acs.jpca.6b12031

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413