全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Ag-Based Catalysts in Different Supports: Activity for Formaldehyde Oxidation

DOI: 10.4236/ampc.2022.128012, PP. 163-176

Keywords: Formaldehyde Oxidation, TiO2, Al2O3, Silver (Ag), Impregnation, Sol-Gel

Full-Text   Cite this paper   Add to My Lib

Abstract:

Through the impregnation method, Ag catalysts with different support (such as TiO2 and γ-Al2O3) were prepared and then tested for catalytic oxidation of formaldehyde (HCHO) at low temperatures. The Ag/TiO2 catalyst exhibited strong catalytic performance, converting HCHO to CO2 and H2O at around 95°C. However, the Ag/Al2O3 catalysts showed much lower activity and reached?100% conversion at 125°C. The Ag-based catalysts were next characterized by several methods (XRD, TEM, FT-R, BET and H2-TPR). Results of characterization revealed that support dramatically impacts?the size and dispersion of Ag particles. The XRD analysis showed the existence of different peaks of the silver on the surface of Al2O3 in the contrast with TiO2 no specific peaks exist. Therefore, the size of the Ag particles and their dispersion are the most important factors that affect their catalytic performance for formaldehyde oxidation. In terms of catalytic performance for HCHO oxidation, the Ag/TiO2?catalyst possesses the best Ag dispersion, as well as the smallest Ag particle size.

References

[1]  Bai, B.Y., Arandiyan, H. and Li, J.H. (2013) Comparison of the Performance for Oxidation of Formaldehyde on Nano-CO3O4, 2D-Co3O4, and 3D-CO3O4 Catalysts. Applied Catalysis B: Environmental, 142-143, 677-683.
https://doi.org/10.1016/j.apcatb.2013.05.056
[2]  Su, Y., Ji, K., Xun, J., Zhang, K., Liu, P. and Zhao, L. (2021) Catalytic Oxidation of Low Concentration Formaldehyde over Pt/TiO2 Catalyst. Chinese Journal of Chemical Engineering, 29, 190-195.
https://doi.org/10.1016/j.cjche.2020.04.024
[3]  Bao, W., Chen, H., Wang, H., Zhang, R., Wei, Y. and Zheng, L. (2020) Pt Nanoparticles Supported on N/Ce-Doped Activated Carbon for the Catalytic Oxidation of Formaldehyde at Room Temperature. ACS Applied Nano Materials, 3, 2614-2624.
https://doi.org/10.1021/acsanm.0c00005
[4]  Ye, J., Zhou, M., Le, Y., Cheng, B. and Yu, J. (2020) Three-Dimensional Carbon Foam Supported Pt/MnO2 for Rapid Capture and Catalytic Oxidation of Formaldehyde at Room Temperature. Applied Catalysis B, 267, Article ID: 118689.
https://doi.org/10.1016/j.apcatb.2020.118689
[5]  Wang, C., Li, Y., Zheng, L., Zhang, C., Wang, Y., Shan, W., Liu, F. and He, H. (2021) A Nonoxide Catalyst System Study: Alkali Metal-Promoted Pt/AC Catalyst for formaldehyde Oxidation at Ambient Temperature. ACS Catalysis, 11, 456-465.
https://doi.org/10.1021/acscatal.0c03196
[6]  Zhao, S., Zhang, Q., Zhao, G. and Zhang, Y. (2020) Hydroxyl Enhanced Structured Pt/Nix/a-AlOOH Catalyst for Formaldehyde Oxidation at Room Temperature. Modern Research in Catalysis, 9, 21-34.
https://doi.org/10.4236/mrc.2020.92002
[7]  Li, K., Ji, J., He, M. and Huang, H. (2020) Complete Oxidation of Formaldehyde over a Pd/CeO2 Catalyst at Room Temperature: Tunable Active Oxygen Species Content by Non-Thermal Plasma Activation. Catalysis Science and Technology, 10, 6257-6265.
https://doi.org/10.1039/D0CY01085E
[8]  Xiang, N., Hou, Y., Han, X., Li, Y., Guo, Y., Liu, Y. and Huang, Z. (2019) Promoting Effect and Mechanism of Alkali Na on Pd/SBA-15 for Room Temperature Formaldehyde Catalytic Oxidation. ChemCatChem, 11, 5098-5107.
https://doi.org/10.1002/cctc.201901039
[9]  Wang, C., Li, Y., Zhang, C., Chen, X., Liu, C., Weng, W., Shan, W. and He, H. (2021) A Simple Strategy to Improve Pd Dispersion and Enhance Pd/TiO2 Catalytic Activity for Formaldehyde Oxidation: The Roles of Surface Defects. Applied Catalysis B: Environmental, 282, Article ID: 119540.
https://doi.org/10.1016/j.apcatb.2020.119540
[10]  Chen, D., Shi, J. and Shen, H. (2020) High-Dispersed Catalysts of Core-Shell Structured Au@SiO2 for Formaldehyde Catalytic Oxidation. Chemical Engineering Journal, 385, Article ID: 123887.
https://doi.org/10.1016/j.cej.2019.123887
[11]  Bu, Y., Chen, Y., Jiang, G., Hou, X., Li, S. and Zhang, Z. (2020) Understanding of Au-CeO2 Interface and Its Role in Catalytic Oxidation of Formaldehyde. Applied Catalysis B: Environmental, 260, Article ID: 118138.
https://doi.org/10.1016/j.apcatb.2019.118138
[12]  Tang, Z., Zhang, W., Li, Y., Huang, Z., Guo, H., Wu, F. and Li, J. (2016) Gold Catalysts Supported on Nanosized Iron Oxide for Low-Temperature Oxidation of Carbon Monoxide and Formaldehyde. Applied Surface Science, 364, 75-80.
https://doi.org/10.1016/j.apsusc.2015.12.112
[13]  Ilieva, L., Dimitrov, D., Kolentsova, E., Venezia, M.A., Karashanova, D., Avdeev, G., Petrova, P., State, R. and Tabakova, T. (2022) Gold-Based Catalysts for Complete Formaldehyde Oxidation: Insights into the Role of Support Composition. Catalysts, 12, Article No. 705.
https://doi.org/10.3390/catal12070705
[14]  Ma, L., Wang, D., Li, J., Bai, B., Fu, L. and Li, Y. (2014) Ag/CeO2 Nanospheres: Efficient Catalysts for Formaldehyde Oxidation. Applied Catalysis B: Environmental, 148-149, 36-43.
https://doi.org/10.1016/j.apcatb.2013.10.039
[15]  Zhang, J., Li, Y., Zhang, Y., Chen, M., Wang, L., Zhang, C. and He, H. (2015) Effect of Support on the Activity of Ag-Based Catalysts for Formaldehyde Oxidation. Scientific Reports, 5, Article No. 12950.
https://doi.org/10.1038/srep12950
[16]  Tang, X., Li, Y., Huang, X., Xu, Y., Zhu, H., Wang, J. and Shen, W. (2006) MnOx-CeO2 Mixed Oxide Catalysts for Complete Oxidation of Formaldehyde: Effect of Preparation Method and Calcination Temperature. Applied Catalysis B: Environmental, 62, 265-273.
https://doi.org/10.1016/j.apcatb.2005.08.004
[17]  Tang, X., Li, Y., Chen, J., Li, Y. and Xu, Y. (2006) Complete Oxidation of Formaldehyde over Ag/MnOx-CeO2 Catalysts. Chemical Engineering Journal, 118, 119-125.
https://doi.org/10.1016/j.cej.2006.02.002
[18]  Chen, D., Qu, Z., Shen, S., Li, X., Shi, Y., Wang, Y., Fu, Q. and Wu, J. (2011) Comparative Studies of Silver-Based Catalysts Supported on Different Supports for the Oxidation of Formaldehyde. Catalysis Today, 175, 338-345.
https://doi.org/10.1016/j.cattod.2011.03.059
[19]  Bai, B. and Li, J. (2014) Positive Effects of K+ Ions on Three-Dimensional Mesoporous Ag/Co3O4 Catalyst for HCHO Oxidation. ACS Catalysis, 4, 2753-2762.
https://doi.org/10.1021/cs5006663
[20]  Chen, Y., Huang, Z., Zhou, M., Ma, Z., Chen, J. and Tang, X. (2017) Single Silver Adatoms on Nanostructured Manganese Oxide Surfaces: Boosting Oxygen Activation for Benzene Abatement. Environmental Science & Technology, 51, 2304-2311.
https://doi.org/10.1021/acs.est.6b04340
[21]  Qin, Y., Qu, Z., Dong, C. and Huang, N. (2017) Effect of Pretreatment Conditions on Catalytic Activity of Ag/SBA-15 Catalyst for Toluene Oxidation. Chinese Journal of Catalysis, 38, 1603-1612.
https://doi.org/10.1016/S1872-2067(17)62842-0
[22]  Dimitriev, Y., Ivanova, Y. and Iordanova, R. (2008) History of Sol-Gel Science and Technology. Journal of the University of Chemical Technology and Metallurgy, 43, 181-192.
[23]  Chan, H.C, Chen, T., Xie, L., Shu, Y. and Gao, Q. (2018) Enhancing Formaldehyde Oxidation on Iridium Catalysts Using Hydrogenated TiO2 Supports. New Journal of Chemistry, 42, 18381-18387.
https://doi.org/10.1039/C8NJ04472D
[24]  Huang, Z., Gu, X., Cao, Q., Hu, P., Hao, J., Li, J. and Tang, X. (2012) Catalytically Active Single-Atom Sites Fabricated from Silver Particles. Angewandte Chemie, 124, 4274-4279.
https://doi.org/10.1002/ange.201109065
[25]  Wang, F., Ma, J., He, G., Chen, M., Wang, S., Zhang, C. and He, H. (2018) Synergistic Effect of TiO2-SiO2 in Ag/Si-Ti Catalyst for the Selective Catalytic Oxidation of Ammonia. Industrial & Engineering Chemistry Research, 57, 11903-11910.
https://doi.org/10.1021/acs.iecr.8b02205
[26]  Zhang, L., Zhang, C. and He, H. (2009) The Role of Silver Species on Ag/Al2O3 Catalysts for the Selective Catalytic Oxidation of Ammonia to Nitrogen. Journal of Catalysis, 261, 101-109.
https://doi.org/10.1016/j.jcat.2008.11.004
[27]  Butovsky, E., Perelshtein, I. and Gedanken, A. (2012) Air Stable Core-Shell Multilayer Metallic Nanoparticles Synthesized by RAPET: fabrication, Characterization and Suggested Applications. Journal of Materials Chemistry, 22, 15025-15030.
https://doi.org/10.1039/c2jm32528d
[28]  Wang, Y., Qu, Z., Xu, J. and Huang, B. (2020) Effect of Al2O3 Phase on the Catalytic Performance for HCHO Oxidation over Ag/Al2O3 Catalysts. Applied Catalysis A. General, 602, Article ID: 117705.
https://doi.org/10.1016/j.apcata.2020.117705
[29]  Atrak, K., Ramazani, A. and Fardood, S.T. (2018) Green Synthesis of Amorphous and Gamma Aluminum Oxide Nanoparticles by Tragacanth Gel and Comparison of Their Photocatalytic Activity for the Degradation of Organic Dyes. Journal of Materials Science: Materials in Electronics, 29, 8347-8353.
https://doi.org/10.1007/s10854-018-8845-2
[30]  Yu, J., Su, Y., Cheng, B. and Zhou, M. (2006) Effects of pH on the Microstructures and Photocatalytic Activity of Mesoporous nanocrystalline titania Powders Prepared via Hydrothermal Method. Journal of Molecular Catalysis A: Chemical, 258, 104-112.
https://doi.org/10.1016/j.molcata.2006.05.036
[31]  Sakthivel, T., kumar, K.A., Ramanathan, R., Senthilselvan, J. and Jagannathan, K. (2017) Silver Doped TiO2 Nano Crystallites for Dye-Sensitized Solar Cell (DSSC) Applications. Materials Research Express, 4, Article ID: 126310.
https://doi.org/10.1088/2053-1591/aa9e36
[32]  Jablońska, M., Nocuń, M. and Bidzinska, E. (2016) Silver-Alumina Catalysts for Low-Temperature Methanol Incineration. Catalysis Letters, 146, 937-944.
https://doi.org/10.1007/s10562-016-1713-x

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413