全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

夹杂物在渣层运动上浮的水模型研究
Study on Water Model of Inclusions Floating up in Slag Layer

DOI: 10.12677/MEng.2022.93023, PP. 181-192

Keywords: 非金属夹杂物,钢–渣界面,水模型,夹杂物去除
Non-Metallic Inclusions
, Steel-Slag Interface, Water Model, The Removal of Inclusions

Full-Text   Cite this paper   Add to My Lib

Abstract:

为研究夹杂物在去除过程中,在钢–渣界面的运动,基于相似原理,用Al2O3和聚丙烯PP (poly-propylene)粒子模拟夹杂物,水模拟钢液,硅油模拟钢渣,建立了一个水模型。通过改变粒子尺寸、种类,以及油层黏度等因素,观察粒子在不同条件下在水–油界面上浮的运动过程,从而分析实际炼钢生产过程中各种因素对夹杂物去除的影响。实验结果表明,粒子在水中只需不到1 s的时间,即可加速至终端速度,其到达水–油界面时的速度主要与粒子密度及尺寸有关。当粒子到达水–油界面时,会与界面发生能量交换。只有当粒子的动能超过了界面变形所需能量,粒子才可以顺利穿过界面。否则,粒子只能滞留在水–油界面。当油层一定时,PP粒子的无量纲位移大于密度更小的Al2O3粒子的无量纲位移,说明密度大的更容易穿过界面。而油层黏度也对粒子运动有一定影响,油层黏度越大,对粒子穿越过程的阻碍也越大,越不利于粒子穿过界面。主要影响因素是粒子与界面间的相互作用关系,即总润湿性。
In order to study the movement of inclusions at the steel-slag interface during the removal process, based on the similarity principle, a water model was established. In the model, Al2O3 and PP particles were used to simulate inclusions, water was used to simulate molten steel, and silicone oil was used to simulate steel slag. By changing the size and type of the particles, and the viscosity of the oil layer, the movement process of the particles floating up through the water-oil interface under different conditions was observed, so as to analyze the influence of the above-mentioned factors on the removal of inclusions in the actual steelmaking production process. The experimental results show that the particles can be accelerated to the terminal velocity in less than 1s in water. Therefore, the velocities when they reach the water-oil interface are mainly related to the particles’ density and size. When the particles reach the water-oil interface, they exchange energy with the interface. Only when the kinetic energy of the particle exceeds the energy required to deform the interface, the particles can pass through the interface. Otherwise, the particles can only stay at the water-oil interface. When the oil layer is fixed, the dimensionless displacement of the PP particles is greater than that of the Al2O3 particles whose density is much smaller, indicating that the denser ones are easier to pass through the interface. The viscosity of the oil layer also has a certain influence on the movement of the particles. The greater the viscosity of the oil layer, the greater the obstacle for the particle to pass, and the less favorable for the particles to pass through the interface. The main influencing factor is the interaction between the particles and the interface, that is, the total wet ability.

References

[1]  张爱梅. 非金属夹杂物对钢性能的影响[J]. 物理测试, 2006, 24(4): 42-44.
[2]  Wikstr?m, J., Nakajima, K., Jons-son, L. and J?nsson, P. (2008) Application of a Model for Liquid Inclusion Separation at a Steel-Slag Interface for Laboratory and Industrial Situations. Steel Research International, 79, 826-834.
https://doi.org/10.1002/srin.200806206
[3]  Chen, C., Ni, P.Y., Jonsson, L.T.I., Cheng, G.G. and J?nsson, P.G. (2016) A Model Study of Inclusions Deposition, Macroscopic Transport, and Dynamic Removal at Steel-Slag Interface for Different Tundish Designs. Metallurgical and Materials Transactions B, 47, 1916-1932.
https://doi.org/10.1007/s11663-016-0637-6
[4]  刘威, 杨树峰, 李京社. 钢-渣界面非金属夹杂物运动行为研究进展[J]. 工程科学学报, 2021, 43(12): 1647-1655.
[5]  Zhou, Y.L., Deng, Z.Y. and Zhu, M.Y. (2017) Study on the Separation Process of Non-Metallic Inclusions at the Steel-Slag Interface Using Water Modeling. International Journal of Minerals, Metallurgy and Materials, 24, 627-637.
https://doi.org/10.1007/s12613-017-1445-y
[6]  周业连, 邓志银, 朱苗勇. 固/液态夹杂物穿过钢渣界面的分离机理[J]. 过程工程学报, 2018, 18(1): 96-102.
[7]  周业连, 邓志银, 朱苗勇. 非球形固态夹杂物穿过钢-渣界面行为研究[J]. 过程工程学报, 2022, 22(2): 222-231.
[8]  孙丽媛. 非金属夹杂物在钢渣界面的去除行为研究[D]: [博士学位论文]. 北京: 北京科技大学, 2013.
[9]  刘超. 钢渣界面夹杂物分离去除的理论研究[D]: [硕士学位论文]. 北京: 北京科技大学, 2014.
[10]  刘超, 李京社, 孙丽媛, 等. 上浮速度对钢渣界面夹杂物去除的影响[J]. 特殊钢, 2014, 35(5): 5-7.
[11]  Liu, C., Yang, S.F., Li, J.S., Zhu, L.B. and Li, X.G. (2016) Motion Behavior of Nonmetallic Inclusions at the Interface of Steel and Slag. Part I: Model Development, Validation, and Preliminary Analysis. Metallurgical and Materials Transactions B, 47, 1882-1892.
https://doi.org/10.1007/s11663-016-0605-1
[12]  Yang, S.F., Li, J.S., Liu, C., Sun, L.Y. and Yang, H.B. (2014) Motion Behavior of Nonmetallic Inclusions at the Interface of Steel and Slag. Part II: Model Application and Discussion. Metallurgical and Materials Transactions B, 45, 2453-2463.
https://doi.org/10.1007/s11663-014-0147-3
[13]  朱苗勇, 魏国, 储满生. 现代冶金工艺学: 钢铁冶金卷[M]. 北京: 冶金工业出版社, 2016: 277.
[14]  沈巧珍, 杜建明. 冶金传输原理[M]. 北京: 冶金工业出版社, 2006: 331.
[15]  毛裕文. 冶金熔体[M]. 北京: 冶金工业出版社, 1994: 52.
[16]  陈家祥. 炼钢常用图表数据手册[M]. 第2版. 北京: 冶金工业出版社, 2010: 304.
[17]  王文豪, 吴复忠, 高雯雯. 液态钢渣的物理化学性质[J]. 现代机械, 2009(6): 91-93.
[18]  杨宏博. 夹杂物穿越钢渣界面过程运动行为研究[D]: [博士学位论文]. 北京: 北京科技大学, 2015.
[19]  周业连, 邓志银, 朱苗勇. 钢-渣界面液态夹杂物分离过程数值模拟[J]. 钢铁, 2018, 53(7): 31-37.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413