全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

局域势调控下石墨烯/h-BN异质结的能带结构和量子相变
Band Structure and Quantum Phase Transition of Graphene/h-BN Heterojunction under Local Potential Control

DOI: 10.12677/CMP.2022.113007, PP. 57-64

Keywords: 石墨烯/h-BN异质结,内禀自旋轨道耦合,局域势,量子自旋霍尔态
Graphene/h-BN Heterojunction
, Intrinsic Spin-Orbit Coupling, Local Potential, Quantum Spin Hall State

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用紧束缚方法研究了局域势调控下石墨烯/六方氮化硼异质结的能带结构及量子相变。结果表明,在给定石墨烯层内禀自旋轨道耦合强度时,石墨烯层处于量子自旋霍尔态而六方氮化硼层处于绝缘态,增大石墨烯层局域势,系统会从量子自旋霍尔态变到半导体态。调节六方氮化硼层局域势可以使异质结产生新的无间隙边缘态,从而使系统中石墨烯层的量子自旋霍尔态变成由层内和层间的边缘态共同构成的量子自旋霍尔态。
The band structure and quantum phase transition of graphene/hexagonal boron nitride heterojunction (h-BN) under local potentials are studied by the tight-binding method. The result shows that the graphene layer is in the quantum spin Hall state and the h-BN layer is in the insulating state when the intrinsic spin-orbit coupling strength of the graphene layer is given. As the local potential of the graphene layer increases, the system will change from a quantum spin Hall state to a semiconductor state. New gapless edge states can be generated by tuning the local potential of the h-BN layer, so that the quantum spin Hall state of the graphene layer becomes the quantum spin Hall state composed of the edge states within and between layers.

References

[1]  Sarma, S.D., Adam, S., Hwang, E.H., et al. (2011) Electronic Transport in Two-Dimensional Graphene. Reviews of Modern Physics, 63, 407-470.
https://doi.org/10.1103/RevModPhys.83.407
[2]  Rutherglen, C., Jain, D. and Burke, P. (2009) Nanotube Electronics for Radiofrequency Applications. Nature Nanotechnology, 4, 811-819.
https://doi.org/10.1038/nnano.2009.355
[3]  Moon, P. and Koshino, M. (2014) Electronic Properties of Graphene/Hexagonal-Boron-Nitride Moiré Superlattice. Physical Review B, 90, Article ID: 155406.
https://doi.org/10.1103/PhysRevB.90.155406
[4]  N’Diaye, A.T., Bleikamp, S., Feibelman, P.J., et al. (2006) Two-Dimensional Ir Cluster Lattice on a Graphene Moiré on Ir(111). Physical Review Letters, 97, Article ID: 215501.
https://doi.org/10.1103/PhysRevLett.97.215501
[5]  Varchon, F., Feng, R., Hass, J., et al. (2007) Electronic Structure of Epitaxial Graphene Layers on SiC: Effect of the Substrate. Physical Review Letters, 99, Article ID: 126805.
https://doi.org/10.1103/PhysRevLett.99.126805
[6]  Sachs, B., Wehling, T.O., Katsnelson, M.I., et al. (2011) Adhesion and Electronic Structure of Graphene on Hexagonal Boron Nitride Substrates. Physical Review B, 84, Article ID: 195414.
https://doi.org/10.1103/PhysRevB.84.195414
[7]  Slotman, G.J., Wijk, M.V., Zhao, P.L., et al. (2015) Effect of Structural Relaxation on the Electronic Structure of Graphene on Hexagonal Boron Nitride. Physical Review Letters, 115, Article ID: 186801.
https://doi.org/10.1103/PhysRevLett.115.186801
[8]  Fan, Y., Zhao, M., Wang, Z., et al. (2011) Tunable Electronic Structures of Graphene/Boron Nitride Heterobilayers. Applied Physics Letters, 98, Article ID: 083103.
https://doi.org/10.1063/1.3556640
[9]  Sun, J., Xu, L. and Zhang, J. (2020) Electronic Structure and Transport Properties of Graphene/h-BN Controlled by Boundary Potential and Magnetic Field. Modern Physics Letters B, 34, Arti-cle ID: 2050180.
https://doi.org/10.1142/S0217984920501808
[10]  Li, X., Xu, L. and Zhang, J. (2020) Band Structure and Transport Property of Graphene/h-BN Heterostructure under Local Potentials. Chinese Journal of Physics (Taipei), 65, 75-81.
https://doi.org/10.1016/j.cjph.2020.02.011
[11]  Kane, C.L. and Mele, E.J. (2004) Quantum Spin Hall Effect in Graphene. Physical Review Letters, 95, Article ID: 226801.
https://doi.org/10.1103/PhysRevLett.95.226801
[12]  Kane, C.L. and Mele, E.J. (2005) Z2 Topological Order and the Quantum Spin Hall Effect. Physical Review Letters, 95, Article ID: 146802.
https://doi.org/10.1103/PhysRevLett.95.146802
[13]  Sheng, D.N., Weng, Z.Y., Sheng, L., et al. (2006) Quantum Spin Hall Effect and Topologically Invariant Chern Numbers. Physical Review Letters, 97, Article ID: 036808.
https://doi.org/10.1103/PhysRevLett.97.036808
[14]  Sheng, L., Sheng, D.N., Ting, C.S., et al. (2005) Nondissipative Spin Hall Effect via Quantized Edge Transport. Physical Review Letters, 95, Article ID: 136602.
https://doi.org/10.1103/PhysRevLett.95.136602
[15]  Prodan, E. (2009) Robustness of the Spin-Chern Number. Physical Review, 80, Article ID: 125327.
https://doi.org/10.1103/PhysRevB.80.125327
[16]  Sheng, L., Sheng, D.N. and Ting, C.S. (2005) Spin-Hall Effect in Two-Dimensional Electron Systems with Rashba Spin-Orbit Coupling and Disorder. Physical Review Letters, 94, Ar-ticle ID: 016602.
https://doi.org/10.1103/PhysRevLett.94.016602
[17]  Andrei Bernevig, B. and Zhang, S.-C. (2006) Quantum Spin Hall Effect. Physical Review Letters, 96, Article ID: 106802.
https://doi.org/10.1103/PhysRevLett.96.106802
[18]  Xu, L., Zhou, Y. and Gong, C.D. (2013) Topological Phase Transition Induced by Spin-Orbit Coupling in Bilayer Graphene. Journal of Physics Condensed Matter, 25, Article ID: 335503.
https://doi.org/10.1088/0953-8984/25/33/335503
[19]  Ren, Y., Qiao, Z. and Niu, Q. (2016) topological Phases in Two-Dimensional Materials: A Review. Reports on Progress in Physics Physical Society, 79, Article ID: 066501.
https://doi.org/10.1088/0034-4885/79/6/066501
[20]  Chen, T.W., Xiao, Z.R., Chiou, D.W., et al. (2011) High Chern Number Quantum Anomalous Hall Phases in Single-Layer Graphene with Haldane Orbital Coupling. Physical Review B, 84, Article ID: 165453.
https://doi.org/10.1103/PhysRevB.84.165453
[21]  Wang, E., Lu, X., Ding, S., Yao, W., Yan, M., Wan, G., et al. (2016) Gaps Induced by Inversion Symmetry Breaking and Second-Generation Dirac Cones in Graphene/Hexagonal Boron Nitride. Nature Physics, 12, 1111-1115.
https://doi.org/10.1038/nphys3856
[22]  Yang, W., Chen, G., Shi, Z., Liu, C.-C., Zhang, L., Xie, G., et al. (2013) Epitaxial Growth of Single-Domain Graphene on Hexagonal Boron Nitride. Nature Materials, 12, 792-797.
https://doi.org/10.1038/nmat3695
[23]  Gorbachev, R.V., Song, J.C.W., Yu, G.L., Kretinin, A.V., Withers, F., Cao, Y., et al. (2014) Detecting Topological Currents in Graphene Superlattices. Science, 346, 448-451.
https://doi.org/10.1126/science.1254966
[24]  Den Nijs, M. (1984) Quantized Hall Conductance in a Two Dimen-sional Periodic Potential. Physica A: Statistical Mechanics and Its Applications, 124, 199-210.
https://doi.org/10.1016/0378-4371(84)90239-5
[25]  Kohmoto, M. (1985) Topological Invariant and the Quantiza-tion of the Hall Conductance. Annals of Physics, 160, 343-354.
https://doi.org/10.1016/0003-4916(85)90148-4
[26]  Hatsugai, Y. (1993) Chern Number and Edge States in the Integer Quantum Hall Effect. Physical Review Letters, 71, 3697-3700.
https://doi.org/10.1103/PhysRevLett.71.3697
[27]  Chang, M.C. and Niu, Q. (1995) Berry Phase, Hyperorbits, and the Hofstadter Spectrum. Physical Review Letters, 75, 1348-1351.
https://doi.org/10.1103/PhysRevLett.75.1348
[28]  Slawinska, J., Zasada, I., Kosinski, P., et al. (2010) Reversible Modifications of Linear Dispersion: Graphene between Boron Nitride Monolayers. Physical Review B: Condensed Matter, 82, Article ID: 085431.
https://doi.org/10.1103/PhysRevB.82.085431

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133