全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

旋转光力系统中光的响应——非互换性
Optical Response of Rotating Optomechanical System—Nonreciprocity

DOI: 10.12677/MP.2022.124011, PP. 108-114

Keywords: 二次谐振,光力学系统,非互换性,Second Harmonic, Optomechanical System, Nonreciprocity

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文分析了腔光力学系统中的探测光的传输特性,此系统由旋转的双模腔和一个力学振子构成,当驱动场从左方或右方传输时,考虑萨格纳克效应对探测场响应的影响。通过研究透射谱,发现光在传输过程中表现出非互换行为。我们期望该方案在信息处理和光通讯方面有一定的应用。
We analyzed the optical transmission of the optomechanical system, which consists of rotating doublemode cavities and a mechanical resonator. When it is drived by a strong field from the left side or the right side, the probe optical response is considered under the Sagnac effect. For the spectrum of the output field, it shows the nonreciprocal transmission behavior. We expect that this scheme may be applicable in information processing and optical communication in the future.

References

[1]  Aspelmeyer, M., Kippenberg, T.J. and Marquardt, F. (2014) Cavity Optomechanics. Reviews of Modern Physics, 86, 1391-1452.
https://doi.org/10.1103/RevModPhys.86.1391
[2]  Agarwal, G.S. and Huang, S. (2010) Electromag-netically Induced Transparency in Mechanical Effects of Light. Physical Review A, 81, Article ID: 041803.
https://doi.org/10.1103/PhysRevA.81.041803
[3]  Vitali, D., Gigan, S., Ferreira, A., et al. (2007) Optomechanical Entanglement between a Movable Mirror and a Cavity Field. Physical Review Letters, 98, Article ID: 030405.
https://doi.org/10.1103/PhysRevLett.98.030405
[4]  Rabl, P. (2011) Photon Blockade Effect in Optomechanical Systems. Physical Review Letters, 107, Article ID: 063601.
https://doi.org/10.1103/PhysRevLett.107.063601
[5]  Feng, L., Ayache, M., Huang, J., Xu, Y.-L., Lu, M.-H., Chen, Y.-F., et al. (2011) Nonreciprocal Light Propagation in a Silicon Photonic Circuit. Science, 333, 729-733.
https://doi.org/10.1126/science.1206038
[6]  Miri, M.A., Ruesink, F., Verhagen, E. and Alù, A. (2017) Optical Nonreciprocity Based on Optomechanical Coupling. Physical Review Applied, 7, Article ID: 064014.
https://doi.org/10.1103/PhysRevApplied.7.064014
[7]  Sounas, D.L. and Alù, A. (2017) Nonreciprocal Photonics Based on Time Modulation. Nature Photonics, 11, 774-783.
https://doi.org/10.1038/s41566-017-0051-x
[8]  Jalas, D., Petrov, A., Eich, M., Freude, W., Fan, S., Yu, Z., et al. (2013) What Is and What Is Not an Optical Isolator. Nature Photonics, 7, 579-582.
https://doi.org/10.1038/nphoton.2013.185
[9]  Lépinary de, L.M., Damskagg, E., Ockeloen-Korppi, C.F. and Sil-lanpaa, M.A., (2019) Realization of Directional Amplification in a Microwave Optomechanical Device. Physical Review Applied, 11, Article ID: 034027.
https://doi.org/10.1103/PhysRevApplied.11.034027
[10]  Maayani, S., Dahan, R., Kligerman, Y., Moses, E., Hassan, A.U., Jing, H, et al. (2018) Flying Couplers above Spinning Resonators Generate Irreversible Refraction. Na-ture, 558, 569-572.
https://doi.org/10.1038/s41586-018-0245-5
[11]  Mukherjee, K. and Jana, P.C. (2021) Probe Response of a Two-Mode Cavity with ?(2) Nonlinearity, Nonreciprocity and Slow and Fast Light. Applied Physics B, 127, Article No. 168.
https://doi.org/10.1007/s00340-021-07704-8
[12]  Post, E.J. (1967) Sagnac Effect. Reviews of Modern Physics, 39, 475-49.
https://doi.org/10.1103/RevModPhys.39.475
[13]  Chow, W.W., Banacloche, J.G., Pedrotti, L.M., Sanders, V.E., Schleich, W. and Scully, M.O. (1985) The Ring Laser Gyro. Reviews of Modern Physics, 57, 61-104.
https://doi.org/10.1103/RevModPhys.57.61
[14]  Gardiner, C.W. and Collett, M.J. (1985) Input and Output in Damped Quantum Systems: Quantum Stochastic Differential Equations and the Master Equation. Physical Re-view A, 31, 3761-3774.
https://doi.org/10.1103/PhysRevA.31.3761
[15]  Chen, J., Levine, Z.H. and Wilkins, J.W. (1995) Calculated Sec-ond Harmonic Susceptibilities of BN, AIN, and GaN. Applied Physics Letters, 66, 1129-1131.
https://doi.org/10.1063/1.113835
[16]  Yang, Z., Chak, P., Bristow, A.D., van Driel, H.M., Iyer, R., Aitchison, J.S., et al. (2007) Enhanced Second Harmonic Generation in AlGaAsmicroring Resonators. Optics Letters, 32, 826-828.
https://doi.org/10.1364/OL.32.000826
[17]  Bergfeld, S. and Daum, W. (2003) Second Harmonic Generation in GaAs: Experiment versus Theoretical Predictions of ?xyz(2). Physical Review Letters, 90, Article ID: 036801.
https://doi.org/10.1103/PhysRevLett.90.036801

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133