全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Smart Grid  2022 

高占比清洁能源下基于关联度的电网低周减载优化配置策略
Optimal Configuration Strategy of Under-Frequency Load Shedding for Power Grid Based on Correlation Degree under High Penetration Level of Clean Energy

DOI: 10.12677/SG.2022.124015, PP. 141-153

Keywords: 低周减载,清洁能源,关联度,场景分析,配置策略
Under-Frequency Load Shedding
, Clean Energy, Correlation Degree, Scenario Analysis, Configuration Strategy

Full-Text   Cite this paper   Add to My Lib

Abstract:

电力系统第三道防线中的低周减载是电网在遭受扰动后阻止系统频率快速持续下滑并最终维持系统频率稳定的重要措施之一。与此同时,大量清洁能源接入电网后,使得电网系统频率的特性变得更为恶化。如何在高占比清洁能源下探讨低周减载的优化配置方案是当前亟待解决的关键课题。为此,本文在大规模清洁能源接入电网的背景下,考虑因电源故障导致系统频率下降的情况,推导了能够有效实现减载的关联度指标,并在此基础上提出了一种基于关联度的电网低周减载优化配置策略。其中,利用改进场景分析方法来描述清洁能源的不确定性。进一步,提出了基于调节功率和稳态频率的低周减载方案整定流程。最后,以IEEE标准算例系统为例,通过仿真对比分析验证了所提出的电网低周减载优化配置策略的有效性。
The under-frequency load shedding (UFLS) in the third line of defense of power system is one of the significant measures to prevent the rapid and continuous decline of the system frequency and ultimately maintain the stability of system frequency after disturbance. Meanwhile, when a large amount of clean energy is connected to the power grid, the frequency characteristics of the power system become worse. How to explore and exploit the optimal configuration strategy of UFLS under high penetration level of clean energy is a key issue to be solved urgently. Therefore, under the background of large-scale grid-connected clean energy, this paper deduces the correlation degree index which can effectively realize load shedding. On this basis, the improved scenario-based method is utilized to describe the uncertainty of clean energy. Further, the setting process of UFLS solution based on the adjustment power and steady-state frequency is proposed. Finally, taking the IEEE standard test system as an example, the validity of the proposed optimal configuration strategy of UFLS is verified by simulations and comparative analysis.

References

[1]  朱锐, 梨劲松, 杨宝起, 韩连山, 高玉喜, 王新宝. 高比例新能源接入区域电网稳定控制技术探讨[J]. 电工技术, 2021(12): 46-49.
[2]  李兆伟, 方勇杰, 李威, 刘福锁, 徐广, 王彩霞. 电化学储能应用于电网频率安全防御三道防线的探讨[J]. 电力系统自动化, 2020, 44(8): 1-7.
[3]  孙华东, 许涛, 郭强, 李亚楼, 林伟芳, 易俊, 李文锋. 英国“8·9”大停电事故分析及对中国电网的启示[J]. 中国电机工程学报, 2019, 39(21): 6183-6192.
[4]  Reddy, C.P., Chakrabarti, S. and Srivastava, S.C. (2014) A Sensitivity-Based Method for Under-Frequency Load-Shedding. IEEE Transactions on Power Systems, 29, 984-985.
https://doi.org/10.1109/TPWRS.2013.2288005
[5]  吴云亮, 李晓珺, 唐晓骏, 王佳丽. 基于减载贡献因子的低频减载动态优化方法研究[J]. 智慧电力, 2019, 47(1): 105-109.
[6]  Laghari, J.A., Mokhlis, H., Karimi, M., Abu Bakar, A.H. and Mohamad, H. (2015) A New Under-Frequency Load Shedding Technique Based on Combination of Fixed and Random Priority of Loads for Smart Grid Applications. IEEE Transactions on Power Systems, 30, 2507-2515.
https://doi.org/10.1109/TPWRS.2014.2360520
[7]  陈军, 陆旭, 赵子涵, 向博, 朱小红. 基于混合模型的优化低频低压减载方法研究[J]. 四川电力技术, 2021, 44(6): 17-20.
[8]  Sun, M., Liu, G., Popov, M., Terzija, V. and Azizi, S. (2021) Underfrequency Load Shedding Using Locally Estimated RoCoF of the Center of Inertia. IEEE Transactions on Power Systems, 36, 4212-4222.
https://doi.org/10.1109/TPWRS.2021.3061914
[9]  Li, C., Wu, Y., Sun, Y., Zhang, H., Liu, Y., Liu, Y. and Terzijz, V. (2020) Continuous Under-Frequency Load Shedding Scheme for Power System Adaptive Frequency Control. IEEE Transactions on Power Systems, 35, 950-961.
https://doi.org/10.1109/TPWRS.2019.2943150
[10]  王怀远, 何培灿, 温步瀛. 基于响应信息的分散式低频减载方案[J]. 电网技术, 2019, 43(8): 2976-2982.
[11]  盛四清, 赵文天, 樊茂森. 适应新能源高占比系统的低频减载优化方法[J]. 太阳能学报, 2022, 43(2): 157-162.
[12]  盛四清, 樊茂森, 张文朝, 潘晓杰, 李明旺, 张立伟. 高新能源占比系统的低频减载优化方法[J]. 太阳能学报, 2021, 42(2): 365-369.
[13]  李顺, 廖清芬, 唐飞, 赵红生, 邵尤国. 高风电渗透率下的自适应低频减载策略研究[J]. 电网技术, 2017, 41(4): 1084-1090.
[14]  张酌伟, 樊艳芳, 张锋, 王衡. 高风电渗透率下新疆电网低频减载方案研究[J]. 电力电容器与无功补偿, 2018, 39(6): 114-118.
[15]  Silva Jr., S.S. and Assis, T.M.L. (2020) Adaptive Underfrequency Load Shedding in Systems with Renewable Sources and Storage Capability. Electric Power Systems Research, 189, Article ID: 106747.
https://doi.org/10.1016/j.epsr.2020.106747
[16]  罗钢, 石东源, 蔡德福, 陈金福, 段献忠. 计及相关性的含风电场电力系统概率可用输电能力快速计算[J]. 中国电机工程学报, 2014, 34(7): 1024-1032.
[17]  杨家然, 王兴成, 隋林涛, 刘先正, 罗晓芬. 采用混合智能算法的含风电电力系统多目标优化调度[J]. 电力系统保护与控制, 2017, 45(11): 21-27.
[18]  林俐, 潘险险, 张凌云, 赵双. 基于免疫离群数据和敏感初始中心的K-means算法的风电场机群划分[J]. 中国电机工程学报, 2016, 36(20): 5461-5468.
[19]  Du, E., Zhang, N., Kang, C., Bai, J., Cheng, L. and Ding, Y. (2016) Impact of Wind Power Scenario Reduction Techniques on Stochastic Unit Commitment. 2016 2nd International Symposium on Stochastic Models in Reliability Engineering, Life Science and Operations Management (SMRLO), Beer Sheva, 15-18 February 2016, 202-210.
https://doi.org/10.1109/SMRLO.2016.42
[20]  Rosh, E. (1988) Principles of Categorization. In: Collins, A. and Smith, E.E. Eds., Readings in Cognitive Science, Lawrence Erlbaum, Hillsdale, 312-322.
https://doi.org/10.1016/B978-1-4832-1446-7.50028-5
[21]  Zhou, Y., Shi, L. and Ni, Y. (2019) An Improved Scenario Reduction Technique and Its Application in Dynamic Economic Dispatch Incorporating Wind Power. 2019 IEEE Innovative Smart Grid Technologies—Asia (ISGT Asia), Chengdu, 21-24 May 2019, 3168-3178.
https://doi.org/10.1109/ISGT-Asia.2019.8881144
[22]  Luo, J., Shi, L. and Ni, Y. (2018) A Solution of Optimal Power Flow Incorporating Wind Generation and Power Grid Uncertainties. IEEE Access, 6, 19681-19690.
https://doi.org/10.1109/ACCESS.2018.2823982

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413