全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

具有零场单分子磁体性质的钴单离子磁体
Cobalt-Based SIMs with Zero Field Single-Molecule Magnetic Properties

DOI: 10.12677/NAT.2022.123015, PP. 124-136

Keywords: 单分子磁体,3d过渡金属离子,单离子磁体,单核钴基配合物,零场
Single-Molecule Magnets
, 3d Transition Metal Ion, Single-Ion Magnets, Mononuclear Cobalt-Based Complexes, Zero Field

Full-Text   Cite this paper   Add to My Lib

Abstract:

单分子磁体材料作为真正意义上的纳米级磁性材料,具有非常广阔的应用前景,研究者们致力于开发性能更优秀,更稳定的单分子磁体。作为特殊的单分子磁体,3d过渡金属单离子磁体磁构关系较为简单,通过适当调控配体场即可将中心金属离子的各向异性最大化,因此3d过渡金属单离子磁体自然而然的成为了前沿研究热点之一。在3d过渡金属单离子磁体中,由于钴离子具有较大的磁各向异性,因此关于钴基配合物的研究与报道居多。但目前报道的大都为场致单离子磁体,很少有单核配合物在零场下表现出慢磁弛豫行为,因此对于零场钴单离子磁体亟需更加深入地研究。本文结合现有研究成果,以单核钴配合物为研究基础,从配位数和配位构型出发,对具有零场单分子磁体性质的钴单离子磁体进行综述,为进一步研究高性能单分子磁体提供新思路。
As real nano-scale magnet materials, single-molecule magnets (SMMs) have very broad application prospects. Re-searchers are committed to developing single molecule magnets with better performance and more stability. The 3d transition metal single-ion magnets (3d-SIMs), as special single-molecule magnets, have relatively simple magneto-structure correlation, and the anisotropy of the central metal ion can be maximized by properly adjusting the ligand field. Therefore, the 3d-SIMs naturally becomes one of the frontier research hotspots. In 3d-SIMs, there are many studies and reports on co-balt-based complexes due to the large magnetic anisotropy of cobalt ion. However, most of the cur-rent reports are field induced single ion magnets, and few cobalt-based SIMs show slow magnetic relaxation under zero field. Therefore, it is urgent to study more in-de- pthly on zero field co-balt-based SIMs. Combined with the existing research results, this paper takes mononuclear co-balt-based complexes as the research basis. Starting from the coordination number and configura-tion, the mononuclear cobalt-based complexes with zero field single-molecule magnetic properties are reviewed, which provides new ideas for the further study of high-performan- ce single-molecule magnets.

References

[1]  Gutfleisch, O., Willard, M.A., Brück, E., et al. (2011) Magnetic Materials and Devices for the 21st Century: Stronger, Lighter, and More Energy Efficient. Advanced Materials, 23, 821-842.
https://doi.org/10.1002/adma.201002180
[2]  Sessoli, R., Gatteschi, D., Caneschi, A., et al. (1993) Magnetic Bi-stability in a Metal-Ion Cluster. Nature, 365, 141-143.
https://doi.org/10.1038/365141a0
[3]  崔会会, 孙同明, 王淼, 等. 高配位3d过渡金属单离子磁体磁各向异性研究[J]. 无机化学学报, 2021, 37(2): 193-205.
[4]  Leuenberger, M.N. and Loss, D. (2001) Quantum Computing in Molecular Magnets. Nature, 410, 789-793.
https://doi.org/10.1038/35071024
[5]  Miller, J.S. and Drillon, M. (2004) Magnetism: Molecules to Materials. Wiley-VCH, Weinheim.
https://doi.org/10.1002/3527604383
[6]  Coronado, E. and Dunbar, K.R. (2009) Preface for the Forum on Molec-ular Magnetism: The Role of Inorganic Chemistry. Inorganic Chemistry, 48, 3293-3295.
https://doi.org/10.1021/ic900218f
[7]  Miller, J.S. and Gatteschi, D. (2010) Molecule-Based Magnets Themed Is-sue. Chemical Society Reviews, 40, 3065-3066.
https://doi.org/10.1039/c1cs90019f
[8]  Winpenny, R. (2012) Mo-lecular Cluster Magnets. Angewandte Chemie International Edition, 51, 7079-7080.
https://doi.org/10.1002/anie.201202869
[9]  Neese, F. and Pantazis, D.A. (2011) What Is Not Required to Make a Single Molecule Magnet. Faraday Discuss, 148, 229-238.
https://doi.org/10.1039/C005256F
[10]  Ishikawa, N., Sugita, M., Ishikawa, T., et al. (2004) Mononuclear Lanthanide Complexes with a Long Magnetization Relaxation Time at High Temperatures:?A New Category of Magnets at the Single-Molecular Level. Journal of Physical Chemistry B, 108, 11265-11271.
https://doi.org/10.1021/jp0376065
[11]  Meng, Y.S., Mo, Z.B., Wang, B.W., et al. (2017) Observa-tion of the Single-Ion Magnet Behavior of d8 Ions on Two- Coordinate Co(I)-NHC Complexes Magnets. Chemical Sci-ence, 6, 7156-7162.
https://doi.org/10.1039/C5SC02611C
[12]  Bunting, P.C., Atanasov, M., Damgaard, M.E., et al. (2018) A Linear Cobalt(II) Complex with Maximal Orbital Angular Momentum from a Non-Aufbau Ground State. Science, 362, Article No. eaat7319.
https://doi.org/10.1126/science.aat7319
[13]  Eichho?fer, A., Lan, Y., Mereacre, V., et al. (2014) Slow Magnetic Re-laxation in Trigonal-Planar Mononuclear Fe(II) and Co(II) Bis(Trimethylsilyl)Amido Complexes—A Comparative Study. Inorganic Chemistry, 53, 1962-1974.
https://doi.org/10.1021/ic401677j
[14]  Deng, Y.F., Wang, Z.X., Ouyang, Z.W., et al. (2016) Large Easy-Plane Magnetic Anisotropy in a Three-Coordinate Cobalt(II) Complex [Li(THF)4][Co(NPh2)3]. Chemistry, 22, 14821-14825.
https://doi.org/10.1002/chem.201603238
[15]  Deng, Y.F., Han, T., Yin, B., et al. (2017) On Balancing the QTM and the Direct Relaxation Processes in Single-Ion Magnets—The Importance of Symmetry Control. Inorganic Chemistry Frontiers, 4, 1141-1148.
https://doi.org/10.1039/C7QI00135E
[16]  Carl, E., Demeshko, S., Meyer, F., et al. (2015) Triimidosulfonates as Acute Bite-Angle Chelates: Slow Relaxation of the Magnetization in Zero Field and Hysteresis Loop of a CoII Complex. Chemistry, 21, 10109-10115.
https://doi.org/10.1002/chem.201406083
[17]  Rechkemmer, Y., Breitgoff, F.D., van der Meer.M., et al. (2016) A Four-Coordinate Cobalt(II) Single-Ion Magnet with Oercivity and a Very High Energy Barrier. Nature Communications, 7, Article No. 10466.
https://doi.org/10.1038/ncomms10467
[18]  Cui, H.H., Lu, F., Chen, X.T., et al. (2019) Zero-Field Slow Magnetic Relaxation and Hysteresis Loop in Four-Coor- dinate CoII Single-Ion Magnets with Strong Easy-Axis Anisotropy. In-organic Chemistry, 58, 12555-12564.
https://doi.org/10.1021/acs.inorgchem.9b01175
[19]  Ishizaki, T., Fukuda, T., Akaki, M., et al. (2019) Synthesis of a Neutral Mononuclear Four-Coordinate Co(II) Complex Having Two Halved Phthalocyanine Ligands That Shows Slow Magnetic Relaxations under Zero Static Magnetic Field. Inorganic Chemistry, 58, 5211-5220.
https://doi.org/10.1021/acs.inorgchem.9b00286
[20]  Zadrozny, J.M. and Long, J.R. (2011) Slow Magnetic Relaxa-tion at Zero Field in the Tetrahedral Complex [Co(SPh)4]2?. Journal of the American Chemical Society, 133, 20732-20734.
https://doi.org/10.1021/ja2100142
[21]  Zadrozny, J.M., Telser, J. and Long, J.R. (2013) Slow Magnetic Relaxation in the Tetrahedral Cobalt(II) Complexes [Co(EPh)4]2?- (E = O, S, Se). Polyhedron, 64, 209-217.
https://doi.org/10.1016/j.poly.2013.04.008
[22]  Fataftah, M.S., Zadrozny, J.M, Rogers, D.M., et al. (2014) A Mononuclear Rransition Metal Single-Molecule Magnet in a Nuclear Spin-Free Ligand Environment. Inorganic Chemis-try, 53, 10716-10721.
https://doi.org/10.1021/ic501906z
[23]  Majed, S.F., Scott, C.C., Bess, V., et al. (2016) Transformation of the Coordination Complex [Co(C3S5)2]2? from a Molecular Magnet to a Potential Qubit. Chemical Science, 7, 6160-6166.
https://doi.org/10.1039/C6SC02170K
[24]  Tu, D.S., Shao, D., Yan, H., et al. (2016) A Carborane-Incorporated Mononuclear Co(II) Complex Showing Zero-Field Slow Magnetic Relaxation. Chemical Com-munications, 52, 14326-14329.
https://doi.org/10.1039/C6CC07728E
[25]  Yao, X.N., Yang, M.W., Xiong, J., et al. (2017) Enhanced Magnetic Anisotropy in a Tellurium-Coordinated Cobalt Single-Ion Magnet. Inorganic Chemistry Frontiers, 4, 701-705.
https://doi.org/10.1039/C6QI00543H
[26]  Mitsuhash, R., Hosoya, S., Suzuki, T., et al. (2019) Hydrogen-Bonding Interactions and Magnetic Relaxation Dynamics in Tetracoordinated Cobalt(II) Single-Ion Magnets. Dalton Transactions, 48, 395-399.
https://doi.org/10.1039/C8DT04537B
[27]  Peng, G., Chen, Y., Li, B., et al. (2020) Bulky Schiff-Base Ligand Supported Co(II) Single-Ion Magnets with Zero-Field Slow Magnetic Relaxation. Dalton Transactions, 49, 5789-5802.
https://doi.org/10.1039/D0DT00790K
[28]  Woods, T.J., Ballesteros-Rivas, M.F., Gómez-Coca, S., et al. (2016) Relaxation Dynamics of Identical Trigonal Bipyramidal Cobalt Molecules with Different Local Symmetries and Packing Arrangements: Magnetostructural Correlations and ab Inito Calculations. Journal of the American Chemical Society, 138, 16407-16416.
https://doi.org/10.1021/jacs.6b10154
[29]  Gómez-Coca, S., Cremades, E., Aliaga-Alcalde, N., et al. (2013) Mono-nuclear Single-Molecule Magnets: Tailoring the Magnetic Anisotropy of First-Row Transition-Metal Complexes. Journal of the American Chemical Society, 135, 7010- 1018.
https://doi.org/10.1021/ja4015138
[30]  Novikov, V.V., Pav-lov, A.A., Nelyubina, Y.V., et al. (2015) A Trigonal Prismatic Mononuclear Cobalt(II) Complex Showing Sin-gle-Molecule Magnet Behavior. Journal of the American Chemical Society, 137, 9792-9795.
https://doi.org/10.1021/jacs.5b05739
[31]  Ozumerzifon, T.J., Bhowmick, I., Spaller, W.C., et al. (2017) Toward Steric Control of Guest Binding Modality: A Cationic Co(II) Complex Exhibiting Cation Binding and Zero-Field Relaxa-tion. Chemical Communications, 53, 4211-4214.
https://doi.org/10.1039/C7CC01172E
[32]  Pavlov, A.A., Savkina, S.A., Belov, A.S., et al. (2017) Trigonal Prismatic Tris-Pyridineoximate Transition Metal Complexes: A Cobalt(II) Compound with High Magnetic Anisotropy. Inorganic Chemistry, 56, 6943-6951.
https://doi.org/10.1021/acs.inorgchem.7b00447

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413