全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

磷掺杂的NiMoO4纳米带的制备及其电催化析氢性能研究
Research on Preparation of Phosphorus-Doped NiMoO4 Nanoribbon and Its Electrocatalytic Hydrogen Evolution Performance

DOI: 10.12677/NAT.2022.123019, PP. 165-175

Keywords: 电解水,P-NiMoO4,MoO3纳米带,析氢反应,电催化剂
Electrolysis of Water
,P-NiMoO4, MoO3 Nanoribbon, Hydrogen Evolution Reaction, Electrocatalyst

Full-Text   Cite this paper   Add to My Lib

Abstract:

在当前能源短缺和环境污染下,氢能源作为一种极具潜在价值的新能源而广受关注,其中电解水析氢反应(HER)成为获得氢能源的一种有效途径。然而高效Pt、Ru等贵金属电催化剂储量低、成本高,限制了其大规模使用。基于此,本文以MoO3纳米带为基底,通过弱碱刻蚀和高温煅烧并通过P掺杂合成了一种具有分级纳米片管状结构的低成本高效非贵金属催化剂P-NiMoO4,得益于这种分级纳米结构和P的掺杂,该催化剂在酸性和碱性条件中均表现出良好的HER性能和循环稳定性。当电流密度为10 mA cm?2时,在0.5 M H2SO4和1 M KOH下的过电位分别为133 mV和95 mV;在200 mA cm?2处的过电位分别为322 mV和342 mV,甚至可以和商业的Pt/C催化剂相媲美。
Under the current energy shortage and environmental pollution, hydrogen energy is widely concerned as a new energy source with great potential value, among which hydrogen electrolysis reaction (HER) has become an effective way to obtain hydrogen energy. However, the low reserves and high costs of noble metal electrocatalysts such as high-efficiency Pt and Ru limit their large-scale use. Based on this, a low-cost and efficient non-precious metal catalyst P-NiMoO
4 with a hierarchical nanosheet-tubular structure was synthesized by weak alkali etching and high-temperature calcination and doped by P. Thanks to this hierarchical nanostructure and P doping, the catalyst exhibited good HER performance and cycling stability in both acidic and alkaline conditions. At a current density of 10 mA?cm?2, the overpotentials were 133 mV and 95 mV at 0.5 M H2SO4 and 1 M KOH, respectively, and 322 mV and 342 mV at 200 mA?cm?2, respectively, which were even comparable to commercial Pt/C catalysts.

References

[1]  张传坤, 牛文东, 赵舒铭, 张远镇, 牛子凡. 全球能源短缺调查及思考[J]. 国网技术学院学报, 2019, 22(2): 36-38.
[2]  Chen, D., Taylor, K.P., Hall, Q. and Kaplan, J.M. (2016) The Neuropeptides FLP-2 and PDF-1 Act in Concert to Arouse Caenorhabditis elegans Locomotion. Genetics, 204, 1151-1159.
https://doi.org/10.1534/genetics.116.192898
[3]  Shen, N., Wang, Y., Peng, H. and Hou, Z. (2020) Renewable Energy Green Innovation, Fossil Energy Consumption, and Air Pollution—Spatial Empirical Analysis Based on China. Sustainability, 12, Article No. 6397.
https://doi.org/10.20944/preprints202007.0167.v1
[4]  梁叔全, 程一兵, 方国赵, 曹鑫鑫, 沈文剑, 钟杰, 等. 能源光电转换与大规模储能二次电池关键材料的研究进展[J]. 中国有色金属学报, 2019, 29(9): 2064-2114.
[5]  Chen, B., Meinertzhagen, I.A. and Shaw, S.R. (1999) Circadian Rhythms in Light-Evoked Responses of the Fly’s Compound Eye, and the Effects of Neuromodulators 5-HT and the Peptide PDF. Journal of Comparative Physiology A, 185, 393-404.
https://doi.org/10.1007/s003590050400
[6]  Gao, H., Yue, H.-H., Qi, F., Yu, B., Zhang, W.-L. and Chen, Y.-F. (2018) Few-Layered ReS2 Nanosheets Grown on Graphene as Electrocatalyst for Hydro-gen Evolution Reaction. Rare Metals, 37, 1014-1020.
https://doi.org/10.1007/s12598-018-1121-z
[7]  Xie, W., Li, Z., Shao, M. and Wei, M. (2018) Layered Double Hydroxide-Based Core-Shell Nanoarrays for Efficient Electrochemical Water Splitting. Frontiers of Chemical Science and Engineering, 12, 537-554.
https://doi.org/10.1007/s11705-018-1719-6
[8]  Bockris, J. (1972) A Hydrogen Economy. Sciences, 176, 1323.
https://doi.org/10.1126/science.176.4041.1323
[9]  高红波, 党金金. 基于碳达峰碳中和目标下氢能源的发展前景及加氢站的选址探析[J]. 现代工业经济和信息化, 2022, 12(2): 181-183.
[10]  Zuttel, A., Remhof, A., Borgschulte, A. and Friedrichs, O. (2010) Hydrogen: The Future Energy Carrier. Philosophical Transactions of the Roy-al Society A: Mathematical, Physical and Engineering Sciences, 368, 3329-3342.
https://doi.org/10.1098/rsta.2010.0113
[11]  Zhou, B., Li, J., Zhang, X. and Guo, J. (2021) Engineering P-Doped Ni3S2-NiS Hybrid Nanorod Arrays for Efficient Overall Water Electrolysis. Journal of Alloys and Compounds, 862, Ar-ticle ID: 158391.
https://doi.org/10.1016/j.jallcom.2020.158391
[12]  Lim, J., Park, D., Jeon, S.S., Roh, C.-W., Choi, J., Yoon, D., Park, M., Jung, H. and Lee, H. (2018) Ultrathin IrO2 Nanoneedles for Electrochemical Water Oxidation. Advanced Func-tional Materials, 28, Article ID: 1704796.
https://doi.org/10.1002/adfm.201704796
[13]  Li, Y., Sun, Y., Qin, Y., Zhang, W., Wang, L., Luo, M., Yang, H. and Guo, S. (2020) Recent Advances on Water-Splitting Electrocatalysis Mediated by Noble-Metal-Based Nanostruc-tured Materials. Advanced Energy Materials, 10, Article ID: 1903120.
https://doi.org/10.1002/aenm.201903120
[14]  Zhang, L., Han, L., Liu, H., Liu, X. and Luo, J. (2017) Poten-tial-Cycling Synthesis of Single Platinum Atoms for Efficient Hydrogen Evolution in Neutral Media. Angewandte Chemie International Edition, 56, 13694-13698.
https://doi.org/10.1002/anie.201706921
[15]  Tahir, M., Pan, L., Idrees, F., Zhang, X., Wang, L., Zou, J.-J. and Wang, Z.L. (2017) Electrocatalytic Oxygen Evolution Reaction for Energy Conversion and Storage: A Comprehensive Review. Nano Energy, 37, 136-157.
https://doi.org/10.1016/j.nanoen.2017.05.022
[16]  Peng, J., Tao, P., Song, C., Shang, W., Deng, T. and Wu, J. (2022) Structural Evolution of Pt-Based Oxygen Reduction Reaction Electrocatalysts. Chinese Journal of Catalysis, 43, 47-58.
https://doi.org/10.1016/S1872-2067(21)63896-2
[17]  Yang, W., Zhang, W., Liu, R., Lv, F., Chao, Y., Wang, Z. and Guo, S. (2022) Amorphous Ru Nanoclusters onto Co-Doped 1D Carbon Nanocages Enables Efficient Hydrogen Evolution Catalysis. Chinese Journal of Catalysis, 43, 110-115.
https://doi.org/10.1016/S1872-2067(21)63921-9
[18]  Liu, Y., Liang, X., Chen, H., Gao, R., Shi, L., Yang, L. and Zou, X. (2017) Full Issue PDF, Volume 18, Issue S1. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 18, 1-103.
https://doi.org/10.1080/21678421.2017.1376513
[19]  Zheng, L., Zhang, W., Gao, B., Lu, H., Fan, X., Zhang, Y., Wang, Y., Wang, S., Gao, Q. and Tang, Y. (2021) One-pot synthesis of few-layered molybdenum disulfide anchored on N, S-codoped carbon for enhanced hydrogen generation. Materials Today Energy, 19, Article ID: 100600.
https://doi.org/10.1016/j.mtener.2020.100600
[20]  Jin, H., Gu, Q., Chen, B., Tang, C., Zheng, Y., Zhang, H., Jaro-niec, M. and Qiao, S.-Z. (2020) Molten Salt-Directed Catalytic Synthesis of 2D Layered Transition-Metal Nitrides for Efficient Hydrogen Evolution. Chem, 6, 2382-2394.
https://doi.org/10.1016/j.chempr.2020.06.037
[21]  Zhao, X., Xue, Z., Chen, W., Wang, Y. and Mu, T. (2020) Eu-tectic Synthesis of High-Entropy Metal Phosphides for Electrocatalytic Water Splitting. ChemSusChem, 13, 2038-2042.
https://doi.org/10.1002/cssc.202000173
[22]  Zhao, Q., Yan, Z., Chen, C. and Chen, J. (2017) Spinels: Controlled Preparation, Oxygen Reduction/Evolution Reaction Application, and Beyond. Chemical Reviews, 117, 10121-10211.
https://doi.org/10.1021/acs.chemrev.7b00051
[23]  Du, J., Chen, C., Cheng, F. and Chen, J. (2015) Rapid Synthesis and Efficient Electrocatalytic Oxygen Reduction/Evolution Reaction of CoMn2O4 Nanodots Supported on Graphene. Inorganic Chemistry, 54, 5467-5474.
https://doi.org/10.1021/acs.inorgchem.5b00518
[24]  Anantharaj, S., Ede, S.R., Sakthikumar, K., Karthick, K., Mishra, S. and Kundu, S. (2016) Recent Trends and Perspectives in Electrochemical Water Splitting with an Emphasis on Sulfide, Selenide, and Phosphide Catalysts of Fe, Co, and Ni: A Review. ACS Catalysis, 6, 8069-8097.
https://doi.org/10.1021/acscatal.6b02479
[25]  Yin, J., Jin, J., Lin, H., Yin, Z., Li, J., Lu, M., Guo, L., Xi, P., Tang, Y. and Yan, C.H. (2020) Optimized Metal Chalcogenides for Boosting Water Splitting. Advanced Science, 7, Article ID: 1903070.
https://doi.org/10.1002/advs.201903070
[26]  Lv, Z., Mahmood, N., Tahir, M., Pan, L., Zhang, X. and Zou, J.J. (2016) Fabrication of Zero to Three Dimensional Nanostructured Molybdenum Sulfides and Their Electrochemical and Photocatalytic Applications. Nanoscale, 8, 18250-18269.
https://doi.org/10.1039/C6NR06836G
[27]  Long, J., Gong, Y. and Lin, J. (2017) Metal-Organic Framework-Derived Co9S8@CoS@CoO@C Nanoparticles as Efficient Elec-tro- and Photo-Catalysts for the Oxygen Evolution Reaction. Journal of Materials Chemistry A, 5, 10495-10509.
https://doi.org/10.1039/C7TA01447C
[28]  Jiang, P., Liu, Q. and Sun, X. (2014) NiP2 Nanosheet Arrays Support-ed on Carbon Cloth: An Efficient 3D Hydrogen Evolution Cathode in Both Acidic and Alkaline Solutions. Nanoscale, 6, 13440-13445.
https://doi.org/10.1039/C4NR04866K
[29]  Zhang, Y., Wang, Y., Wang, T., Wu, N., Wang, Y., Sun, Y., Fu, L., Du, Y. and Zhong, W. (2019) Heterostructure of 2D CoP Nanosheets/1D Carbon Nanotubes to Significantly Boost the Alkaline Hydrogen Evolution. Advanced Materials Interfaces, 7, Article ID: 1901302.
https://doi.org/10.1002/admi.201901302
[30]  Zhang, S., Xiong, T., Tang, X., Ma, Q., Hu, F. and Mi, Y. (2019) Engineering Inner-Porous Cobalt Phosphide Nanowire Based on Controllable Phosphating for Efficient Hydrogen Evo-lution in Both Acidic and Alkaline Conditions. Applied Surface Science, 481, 1524-1531.
https://doi.org/10.1016/j.apsusc.2019.03.250
[31]  Yu, L., Mishra, I.K., Xie, Y., Zhou, H., Sun, J., Zhou, J., Ni, Y., Luo, D., Yu, F., Yu, Y., Chen, S. and Ren, Z. (2018) Ternary Ni2(1?x)Mo2xP Nanowire Arrays toward Efficient and Sta-ble Hydrogen Evolution Electrocatalysis under Large-Current-Density. Nano Energy, 53, 492-500.
https://doi.org/10.1016/j.nanoen.2018.08.025
[32]  Nikam, R.D., Lu, A.Y., Sonawane, P.A., Kumar, U.R., Yadav, K., Li, L.J. and Chen, Y.T. (2015) Three-Dimensional Heterostructures of MoS2 Nanosheets on Conducting MoO2 as an Efficient Electrocatalyst to Enhance Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 7, 23328-23335.
https://doi.org/10.1021/acsami.5b07960
[33]  Yang, L., Zhou, W., Hou, D., Zhou, K., Li, G., Tang, Z., Li, L. and Chen, S. (2015) Porous Metallic MoO2-Supported MoS2 Nanosheets for Enhanced Electrocatalytic Activity in the Hy-drogen Evolution Reaction. Nanoscale, 7, 5203-5208.
https://doi.org/10.1039/C4NR06754A
[34]  Qu, Q., Zhang, J.H., Wang, J., Li, Q.Y., Xu, C.W. and Lu, X. (2017) Three-Dimensional Ordered Mesoporous Co3O4 Enhanced by Pd for Oxygen Evolution Reaction. Scientific Reports, 7, Article No. 41542.
https://doi.org/10.1038/srep41542

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413