全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

氨基酸辅助制备无机纳米材料研究进展
Recent Advances in Amino Acid-Assisted Synthesis of Inorganic Nanomaterials

DOI: 10.12677/NAT.2022.123021, PP. 185-191

Keywords: 氨基酸,纳米材料,制备
Amino Aicds
, Nanomaterials, Preparation

Full-Text   Cite this paper   Add to My Lib

Abstract:

近年来,无机纳米材料在光、电、磁等领域的应用价值获得了人们的广泛关注,于是,纳米材料的可控制备成为该领域的重要内容。氨基酸凭借其独特的结构与元素组成,在纳米材料的可控制备过程中起重要作用。本文综述了氨基酸辅助制备无机纳米材料的几类情况,包括硫化物、氧化物、氟化物等。氨基酸在制备过程中的作用包括:直接作为某种元素的来源使用,以替代某些污染大、成本高的原料;作为表面修饰剂,通过氨基酸自身丰富的官能团对材料表面进行修饰或稳定;作为结构导向剂,控制产物生长的取向。本文将为氨基酸辅助制备无机纳米材料提供一定的理论指导。
Recently, inorganic nanomaterials have attracted widespread attention for their application value in the fields of optics, electricity and magnetism, thereby; the controllable preparation of nanomaterials has become an important content in these fields. Amino acids play an important role in the controllable preparation of nanomaterials by virtue of their unique structures and elemental compositions. In this paper, several categories of amino acid-assisted preparation of inorganic nanomaterials are reviewed, including sulfides, oxides and fluorides. The functions of amino acids in the preparation process include: directly used as a source of certain elements to replace some raw materials with high pollution and high cost; as surface modifiers, the surface of the material is modified or stabilized by the rich functional groups of amino acids; as structural directing agents that control the orientation growth of product. This work will provide some theoretical guidance for the amino acid-assisted preparation of inorganic nanomaterials.

References

[1]  Chen, X.Y., Zhang, X.F., Shi, C.W., Li, X. and Qian, Y. (2005) A Simple Biomolecule-Assisted Hydrothermal Ap-proach to Antimony Sulfide Nanowires. Solid State Communications, 134, 613-615.
https://doi.org/10.1016/j.ssc.2005.03.004
[2]  Zhang, B.H., Guo, F.Q., Yang, L.H. and Wang, J. (2014) Tunable Synthesis of Multi-Shaped PbS via L-cysteine Assisted Solvothermal Method. Journal of Crystal Growth, 405, 142-149.
https://doi.org/10.1016/j.jcrysgro.2014.07.033
[3]  Dhanker, R., Hussain, T., Tyagi, P., Singh, K.J. and Kamble, S.S. (2021) The Emerging Trend of Bio-Engineering Approaches for Microbial Nanomaterial Synthesis and Its Applica-tions. Frontiers in Microbiology, 12, Article ID: 638003.
https://doi.org/10.3389/fmicb.2021.638003
[4]  李晓林. 金属氧化物和硫化物一维纳米材料的合成表征和性能研究[D]: [博士学位论文]. 北京: 清华大学, 2005.
[5]  Tomizaki, K., Kubo, S., Ahn, S., Satake, M. and Imai, T. (2012) Biomimetic Alignment of Zinc Oxide Na-noparticles along a Peptide Nanofiber. Langmuir, 28, 459-466.
https://doi.org/10.1021/la301745x
[6]  Dong, Y.H., Ma, A.Q., Zhang, D., Gao, Y. and Li, H. (2020) Preparation of High-Performance α-Bi2O3 Photocatalysts and Their Photocatalytic Activity. Surface Innovations, 8, 295-303.
https://doi.org/10.1680/jsuin.20.00013
[7]  顾宗林. 纳米材料与重要生物分子的相互作用机理及生物效应研究[D]: [博士学位论文]. 苏州: 苏州大学, 2018.
[8]  Termeh, T. and Wick, J. (2021) N, S Doped Carbon Quantum Dots Inside Mesoporous Silica for Effective Adsorption of Methylene Blue Dye. SN Applied Sciences, 3, Article No. 305.
https://doi.org/10.1007/s42452-021-04287-z
[9]  Yue, W.J., Wei, F.Y., He, C.B., Wu, D.D., Tang, N.W. and Qiao, Q.Q. (2017) L-Cysteine Assisted-Synthesis of 3D In2S3 for 3D CuInS2 and Its Application in Hybrid Solar Cells. RSC Advances, 7, 37578-37587.
https://doi.org/10.1039/C7RA05730J
[10]  孙聪. 水溶性ZnS掺杂型荧光量子点的制备及性能研究[D]: [硕士学位论文]. 福州: 福建师范大学, 2013.
[11]  李康纠. CdS纳米线及其复合结构的制备和光学性质研究[D]: [硕士学位论文]. 长沙: 湖南大学, 2010.
[12]  盖红德. CdS微/纳米材料的控制合成及生长机理研究[D]: [博士学位论文]. 济南: 山东大学, 2008.
[13]  陈小亚, 李红玲, 王世明, 杨敏, 齐彦兴. 生物分子辅助水热法合成花状二硫化钼[J]. 化工新型材料, 2011, 39(5): 92-94.
[14]  Zhu, J., Wei, S., Lee, I.Y., Park, S., Willis, J., Haldolaarachchige, N., et al. (2012) Silica Stabilized Iron Particles toward Anticorrosion Magnetic Polyure-thane Nanocomposites. RSC Advances, 2, 1136-1143.
https://doi.org/10.1039/C1RA00758K
[15]  Feng, J., Yan, Y., Chen, D., Ni, W., Yang, J., Ma, S., et al. (2011) Study of Thermalstability of Fumed Silica Based Thermal Insulating Compos-Itesathigh Temperatures. Composites Part B: Engineering, 42, 1821-1825.
https://doi.org/10.1016/j.compositesb.2011.06.023
[16]  Maic, G. and Calos, P. (2003) A New Mechanism of Thermo-Chromism for Silica Sol-Gelmaterials. Monatshefte für Chemie, 134, 381-385.
https://doi.org/10.1007/s00706-002-0524-5
[17]  Hai, Z.G., Yi, M.S. and Ye, C. (2003) Numerical Study of Elec-troluminescence from Cembedded SiO2 Films. Journal of Functional Materials, 39, 145-147.
[18]  Lin, S.W., Guo, Y.X., Li, X. and Liu, Y. (2015) Glycine Acid-Assisted Green Hydrothermal Synthesis and Controlled Growth of WO3 Nan-owires. Materials Letters, 152, 102-104.
https://doi.org/10.1016/j.matlet.2015.03.099
[19]  李彬, 陈星炜, 张天永, 姜爽, 张光辉, 吴武斌. 色氨酸辅助合成光催化活性增强的球形纳米TiO2[J]. 化工进展, 2018, 37(1): 175-181.
[20]  陈星炜. 氨基酸辅助制备纳米TiO2及其复合光催化剂[D]: [硕士学位论文]. 天津: 天津大学, 2018.
[21]  Wu, Q., Chen, X. and Zhang, P. (2008) Amino Acid-Assisted Synthesis of ZnO Hierarchical Architectures and Theirnovel Photocatalytic Activities. Crystal Growth and Design, 8, 3010-3018.
https://doi.org/10.1021/cg800126r
[22]  Zhang, G., Shen, Z., Liu, M., Chen, T.H., Guo, C., Sun, P., et al. (2006) Synthesis and Characterization of Mesoporous Ceria with Hierarchical Nanoarchitecture Controlled by Amino Acids. Journal of Physical Chemistry B, 110, Article ID: 25782.
https://doi.org/10.1021/jp0648285
[23]  Zhang, G.J., Shen, Z.R., et al. (2006) Synthesis and Characterization of Mesoporous Ceria with Hierarchical Nanoarchitecture Con-trolled by Amino Acids.The Journal of Chemical Physics B, 110, 25782-25790.
https://doi.org/10.1021/jp0648285
[24]  Yang, X.F., Dong, X.T., Wang, J.X. and Liu, G.X. (2009) Gly-cine-Assisted Hydrothermal Synthesis of Single-Crystalline LaF3:Eu3+ Hexagonal Nanoplates. Journal of Alloys and Compounds, 487, 298-303.
https://doi.org/10.1016/j.jallcom.2009.07.110
[25]  Wang, M., Shen, X.L., Tang, Y.F., et al. (2012) Gly-cine-Assisted Hydrothermal Synthesis of Different Morphological CaF2:Ln3+ (Ln = Eu, Tb) Microcrystals. Chinese Journal of Inorganic Chemistry, 28, 2660-2666.
[26]  Wang, M., Shi, Y.J. and Jiang, G.Q. (2012) 3D Hierarchical Zn3(OH)2V2O7?2H2O and Zn3(VO4)2 Microspheres: Synthesis, Characterization and Photoluminescence. Materials Re-search Bulletin, 47, 18-23.
https://doi.org/10.1016/j.materresbull.2011.10.020
[27]  Wang, M., Shi, Y.J., Tang, Y.F. and Jiang, G.Q. (2013) Nanoparticles-Assembled CaWO4: Tb3+ Hollow Microspheres: Glycine-Assisted Fabrication, Characterization and Pho-toluminescence. Materials Letters, 109, 12-15.
https://doi.org/10.1016/j.matlet.2013.07.037
[28]  Wang, M., Tang, Y.F., Sun, T.M., Jiang, G.Q. and Shi, Y.J. (2014) Yolk-Shell ZnWO4 Microspheres: One-Pot Synthesis, Characterization and Photocatalytic Properties. CrystEngComm, 16, 11035-11041.
https://doi.org/10.1039/C4CE01792G
[29]  Wang, M., Shi, Y.J., Tang, Y.F. and Jiang, G.Q. (2014) Hierarchical Nanowires-Assembled YVO4 Microspheres: Synthesis, Characterization and Photocatalytic Properties. Materials Letters, 132, 236-239.
https://doi.org/10.1016/j.matlet.2014.06.104
[30]  Wang, M., Guo, Y.Y., Fu, X.D., Cui, H., Sun, T., Tang, Y., et al. (2021) Facile Synthesis of Novel Zn3(OH)2V2O7?2H2O Nanocables with Excellent Adsorption Properties. Materials Letters, 283, Article ID: 128710.
https://doi.org/10.1016/j.matlet.2020.128710
[31]  Wang, M., Guo, Y.Y., Wang, Z.D., Cui, H., Sun, T. and Tang, Y. (2021) Simple Glycerol-Assisted and Morphology Controllable Solvothermal Synthesis of CeVO4/BiVO4 Hierar-chical Hollow Microspheres with Enhanced Photocatalytic Activities. Materials Chemistry Frontiers, 5, 6522-6529.
https://doi.org/10.1039/D1QM00770J

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413