全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Phenoloxidase and Melanization Innate Immune Activities in Green Darner Dragonfly Nymphs (Anax junius)

DOI: 10.4236/abc.2022.124011, PP. 130-141

Keywords: Aquatic Insects, Arthropod, Dragonfly, Hemolymph, Innate Immunity, Insect

Full-Text   Cite this paper   Add to My Lib

Abstract:

Insects in the Order Odonata are highly subject to infection by gregarine parasites. However, despite the important ecological roles that insects play in every ecosystem in which they exist, little research has been devoted to the description of insect immunity. Insects rely heavily on the rapid actions of innate immune mechanisms to prevent infection. We characterized the melanization response in the hemolymph of green darner dragonfly (Anax junius) nymphs. Incubation of chymotrypsin-activated hemolymph with L-DOPA resulted in volume- and time-dependent production of dopaquinone via the phenoloxidase (PO) enzyme, with biphasic accumulation of product. The PO activity was temperature-dependent, with a stepwise increase from 20 - 35 and maximum activity measured at 35 - 40. The formation of product was also inhibited in a concentration-dependent manner by diethylcarbonate, a specific inhibitor of PO activity, which indicated that the observed activity was due to the presence of PO enzyme. The rate of formation and quantity of melanin was dependent on exposure to different titers of bacteria. This is the first characterization of both PO activity and melanization response in green darner dragonflies.

References

[1]  Palmer, W. and Jiggins, F. (2015) Comparative Genomics Reveals the Origins and Diversity of Arthropod Immune Systems. Molecular Biology and Evolution, 32, 2111- 2119.
https://doi.org/10.1093/molbev/msv093
[2]  Rowley, A. and Powell, A. (2007) Invertebrate Immune Systems—Specific, Quasi- Specific, or Nonspecific? Journal of Immunology, 179, 7209-7214.
https://doi.org/10.4049/jimmunol.179.11.7209
[3]  Schmid-Hempel, P. (2005) Evolutionary Ecology of Insect Immune Defenses. Annual Reviews of Entomology, 50, 529-551.
https://doi.org/10.1146/annurev.ento.50.071803.130420
[4]  Ratcliffe, N.A., Rowley, A.F., Fitzgerald, S.W. and Rhodes, C.P. (1985) Invertebrate Immunity: Basic Concepts and Recent Advances. International Review of Cytology, 97, 183-350.
https://doi.org/10.1016/S0074-7696(08)62351-7
[5]  Rosales, C. (2017) Cellular and Molecular Mechanisms of Insect Immunity. In: Shields, V.D.C., Ed., Insect Physiology and Ecology, IntechOpen, London, 179-212.
https://doi.org/10.5772/67107
[6]  Johansson, M. and Soderhall, K. (1996) The Prophenoloxidase System and Associated Proteins in Invertebrates. Progress in Molecular and Subcellular Biology, 15, 46-66.
https://doi.org/10.1007/978-3-642-79735-4_3
[7]  Amparyup, P., Sutthangkul, J., Charoensapsri, W. and Tassanakajon, A. (2012) Pattern Recognition Protein Binds to Lipopolysaccharide and b-1,3-glucan and Activates Shrimp Prophenoloxidase System. Journal of Biological Chemistry, 287, 10060- 10069.
https://doi.org/10.1074/jbc.M111.294744
[8]  Nappi, A.J. and Vass, E. (1993) Melanogenesis and the Generation of Cytotoxic Molecules during Insect Cellular Immune Reactions. Pigment Cell Research, 6, 117-126.
https://doi.org/10.1111/j.1600-0749.1993.tb00590.x
[9]  Cabanes, J., Garcia-Canovas, F., Lozano, J. and Garcia-Comonas, F. (1986) A Kinetic Study of the Melanization Pathway between L-Tyrosine and Dopachrome. Biochimica Biophysica Acta, 923, 187-195.
https://doi.org/10.1016/0304-4165(87)90003-1
[10]  Jiravanichpaisal, P., Lee, B. and Soderhall, K. (2006) Cell-Mediated Immunity in Arthropods: Hematopoiesis, Coagulation, Melanization and Opsonization. Immunobiology, 211, 213-236.
https://doi.org/10.1016/j.imbio.2005.10.015
[11]  Nakhleh, J, Moussawi, L. and Osta, M. (2017) Chapter Three. The Melanization Response in Insect Immunity. In: Ligoxygakis, P., Ed., Insect Immunity, Advances in Insect Physiology, Vol. 52, Elsevier, Amsterdam, 83-109.
https://doi.org/10.1016/bs.aiip.2016.11.002
[12]  Braun, A., Hoffman, J. and Meister, M. (1998) Analysis of the Drosophila Host Defense in Domino Mutant Larvae, Which Are Devoid of Hemocytes. Proceedings of the National Academy of Science, 95, 14337-14342.
https://doi.org/10.1073/pnas.95.24.14337
[13]  Binggeli, O. Neyen, C. Poidevin, M. and Lemaitre, B. (2014) Prophenoloxidase Activation Is Required for Survival to Microbial Infections in Drosophila. PLOS Pathogens, 10, e1004067.
https://doi.org/10.1371/journal.ppat.1004067
[14]  Nappi, A. and Christensen, B. (2005) Melanogenesis and Associated Cytotoxic Reactions: Applications to Insect Innate Immunity. Insect Biochemistry and Molecular Biology, 35, 443-459.
https://doi.org/10.1016/j.ibmb.2005.01.014
[15]  Ilvonen, J. and Suhonen, J. (2016) Phylogeny Affects Host’s Weight, Immune Response, and Parasitism in Damselflies and Dragonflies. Royal Society Open Science, 3, Article ID: 160421.
https://doi.org/10.1098/rsos.160421
[16]  Weisser, W. and Siemann, E. (2008) The Various Effects of Insects on Ecosystem Functioning. In: Weisser and Siemann, Eds., Insects and Ecosystem Function, Springer, Berlin, 4-7.
https://doi.org/10.1007/978-3-540-74004-9
[17]  May, M. (2019) Odonata: Who They Are and What They Have Done for Lately: Classification and Ecosystem Services of Dragonflies. Insects, 10, 62.
https://doi.org/10.3390/insects10030062
[18]  Hasanah, M., Rohman, F. and Susanto, H. (2021) Environmental Indicators Based on Odonata Diversity around the Springs in Malang Raya, East Java. AIP Conference Proceedings, 2353, Article ID: 030035.
https://doi.org/10.1063/5.0052980
[19]  Richardson, J.S. (2003) Identification Manual for the Dragonfly Larvae (Anisoptera) of Florida. State of Florida Department of Environmental Protection, Tallahassee.
http://publicfiles.dep.state.fl.us/dear/labs/biology/biokeys/dragonflykey.pdf
[20]  Sarna, T. and Sealy, R. (1984) Photoinduced Oxygen Consumption in Melanin Systems. Action Spectra and Quantum Yields for Eumelanin and Synthetic Melanin. Photochemistry and Photobiology, 39, 69-74.
https://doi.org/10.1111/j.1751-1097.1984.tb03406.x
[21]  Cooper, M. and Alder, M. (2006) The Evolution of Adaptive Immune Systems. Cell, 124, 815-822.
https://doi.org/10.1016/j.cell.2006.02.001
[22]  Pancer, Z., Skorokhod, A., Blumbach, B. and Müller, W.E.G. (1998) Multiple Ig-Like Featuring Genes Divergent within and among Individuals of the Marine Sponge Geodia cydonium. Gene, 207, 227-233.
https://doi.org/10.1016/S0378-1119(97)00631-8
[23]  Blumbach, B., Diehl-Seifert, B., Seack, J., Steffen, R., Müller, I.M. and Müller, W.E. (1999) Cloning and Expression of Novel Receptors Belonging to the Immunoglobulin Superfamily from the Marine Sponge Geodia cydonium. Immunogenetics, 49, 751-763.
https://doi.org/10.1007/s002510050549
[24]  Azumi, K., De Santis, R., De Tomaso, A., et al. (2003) Genomic Analysis of Immunity in a Urochordate and the Emergence of the Vertebrate Immune System: “Waiting for Godot”. Immunogenetics, 55, 570-581.
https://doi.org/10.1007/s00251-003-0606-5
[25]  Iwanga, S. and Lee, B.-L. (2005) Recent Advances in the Innate Immunity of Invertebrate Animals. Journal of Biochemistry and Molecular Biology, 38, 128-150.
https://doi.org/10.5483/BMBRep.2005.38.2.128
[26]  Watson, F., Puttmann-Holgado, R., Thomas, F., Lamar, D., Hughes, M., Kondo, M., Rebel, V.I. and Schmucker, D. (2005) Extensive Diversity of Ig-Superfamily Proteins in the Immune System of Insects. Science, 309, 1874-1878.
https://doi.org/10.1126/science.1116887
[27]  Dong, Y., Taylor, H. and Dimopoulos, G. (2006) AgDscam, a Hypervariable Immunoglobulin Domain-Containing Receptor of the Anopheles gambiae Innate Immune System. PLoS Biology, 4, e229. https://doi.org/10.1371/journal.pbio.0040229
[28]  Hoffman, J., Reichhart, J.-M. and Hetru, C. (1996) Innate Immunity in Higher Insects. Current Opinions in Immunology, 8, 8-13.
https://doi.org/10.1016/S0952-7915(96)80098-7
[29]  Lanz-Mendoza, H. and Garduno, J. (2018) Insect Innate Immune Memory. In: Cooper, E., Ed., Advances in Comparative Immunology, Springer, Cham, 193-211.
https://doi.org/10.1007/978-3-319-76768-0_9
[30]  Kojour, M., Han, Y. and Jo, Y. (2020) An Overview of Insect Innate Immunity. Entomological Research, 50, 282-291.
https://doi.org/10.1111/1748-5967.12437
[31]  Medzhitov, R. and Janeway, C. (1997) Innate Immunity: The Virtues of a Nonclonal System of Recognition. Cell, 91, 295-298.
https://doi.org/10.1016/S0092-8674(00)80412-2
[32]  Jose-Ayala, F., Rzhetsky, A. and Ayala, F. (1998) Origin of the Metozoam Phyla: Molecular Clocks Confirm Paleontological Estimates. Proceedings of the National Academy of Science, 95, 606-611.
https://doi.org/10.1073/pnas.95.2.606
[33]  Cerenius, L. and Soderhall, K. (2004) The Prophenoloxidase-Activating System in Invertebrates. Entomological Reviews, 198, 116-126.
https://doi.org/10.1111/j.0105-2896.2004.00116.x
[34]  Rantala, M., Koskimlki, J., Taskinen, J., Tynkynnen, K. and Suhonen, J. (2000) Immunocompetence, Developmental Stability and Wingspot Size in the Damselfly Calopteryx splendens L. Proceedings of the Royal Society London B Biological Science, 267, 2453-2457.
https://doi.org/10.1098/rspb.2000.1305
[35]  Rantala, M. and Roff, D. (2007) Inbreeding and Extreme Outbreeding Cause Sex Differences in Immune Defence and Life History Traits in Epirrita autumnata. Heredity, 98, 329-336.
https://doi.org/10.1038/sj.hdy.6800945
[36]  Nagel, L., Mlynareck, J. and Forbes, M. (2011) Immune Response to Nylon Filaments in Two Damselfly Species That Differ in Their Resistance to Ectoparasitic Mites. Ecological Entomology, 36, 736-743.
https://doi.org/10.1111/j.1365-2311.2011.01323.x
[37]  Joop, G. and Rolff, J. (2004) Plasticity of Immune Function and Condition under the Risk of Predation and Parasitism. Evolution and Ecology Research, 6, 1051-1062.
[38]  May, M. (1976) Thermoregulation and Adaption to Temperature in Dragonflies (Odonata: Anisoptera). Ecological Monographs, 46, 1-32.
https://doi.org/10.2307/1942392
[39]  May, M. (2017) Body Temperature Regulation in the Dragonfly, Arigomphis villosipes, (Odonata: Anisoptera: Gomphidae). International Journal of Odonatology, 20, 151-163.
https://doi.org/10.1080/13887890.2017.1346523
[40]  Moore, N.W. (1953) Population Density in Adult Dragonflies (Odonata, Anisoptera). Journal of Animal Ecology, 22, 344-359.
https://doi.org/10.2307/1822
[41]  Corbet, P.S. (1957) The Life History of the Emperor Dragonfly, Anax imliperator Leach (Odonata: Aeshnidae). Journal of Animal Ecology, 26, 1-69.
https://doi.org/10.2307/1781
[42]  Ligoxygakis, P., Pelte, N., Ji, C., Leclerc, V., Duvic, B., Belvin, M., Jiang, H., Hoffman, J. and Reichhart, J. (2002) A Serpin Mutant Links Toll Activation to Melanization in the Host Defence of Drosophila. EMBO Journal, 21, 6330-6337.
https://doi.org/10.1093/emboj/cdf661
[43]  Beutler, B. and Rehli, M. (2002) Evolution of the TIR, Tolls and TLRs: Functional Inferences from Computational Biology. Current Topics in Microbiology and Immunology, 270, 1-21.
https://doi.org/10.1007/978-3-642-59430-4_1
[44]  Lima, L., Torres, A., Jardim, R., Mequita, R. aqnd Schama, R. (2021) Evolution of Toll, Spatle, and MyD88 in Insect: The Problem of Dipter Bias. BMC Genomic, 22, Article No. 562.
https://doi.org/10.1186/s12864-021-07886-7
[45]  Luo, C. and Zheng, L. (2000) Independent Evolution of Toll and Related Genes in Insects and Mammals. Immunogenetics, 51, 92-98.
https://doi.org/10.1007/s002510050017
[46]  Leulier, F. and Lemaitre, B. (2008) Toll-Like Receptors-Taking an Evolutionary Approach. Nature Reviews-Genetics, 9, 165-178.
https://doi.org/10.1038/nrg2303
[47]  Ilmer, J.-L. and Zheng, L. (2003) Biology of Toll Receptors: Lessons from Insects and Mammals. Journal of Leukocyte Biology, 75, 18-26.
https://doi.org/10.1189/jlb.0403160
[48]  Nakanishi, K., Yokomizo, H. and Hayahsi, T. (2021) Population Model Analysis of the Combined Effects of Insecticide Use and Habitat Degradation on the Past Sharp Declines of the Dragonfly Sympetrum frequens. Science of the Total Environment, 787, Article ID: 147526.
https://doi.org/10.1016/j.scitotenv.2021.147526
[49]  Stoks, R. and Cordoba-Aguilar, A. (2012) Evolutionary Ecology of Odonata: A Complex Life Cycle Perspective. Annual Reviews of Entomology, 57, 249-265.
https://doi.org/10.1146/annurev-ento-120710-100557
[50]  Raebel, E., Merckx, T., Feber, R., Riordan, P., Thompson, D. and Macdonald, D. (2012) Multi-Scale Effects of Farmland Management on Dragonfly and Damselfly Assemblages of Farmland Ponds. Agriculture, Ecosystems, and Environment, 161, 80-87.
https://doi.org/10.1016/j.agee.2012.07.015
[51]  Rodrigues, M., Roque, F., Quintero, J., Pena, J., Sousa, D. and Junior, P. (2016) Nonlinear Responses in Damselfly Community along a Gradient of Habitat Loss in a Savanna Landscape. Biological Conservation, 194, 113-120.
https://doi.org/10.1016/j.biocon.2015.12.001
[52]  Suhonen, J., Hilli-Lukkarinen, M., Korkeamaki, E., Kuitenen, M., Kullas, J., Pentinnen, J. and Salmela, J. (2010) Local Extinction of Dragonfly and Damselfly Populations in Low- and High-Quality Habitat Patches. Conservation Biology, 24, 1148- 1153.
https://doi.org/10.1111/j.1523-1739.2010.01504.x
[53]  Brookes, D., Mclennan, D., Leon-Regagnon, V. and Hoberg, E. (2006) Phylogeny, Ecological Fitting and Lung Flukes: Helping Solve the Problem of Emerging Infectious Diseases. Revista Mexicana de Biodiverisidad, 77, 225-233.
https://doi.org/10.22201/ib.20078706e.2006.002.339
[54]  Locklin, J. and Vodopich, D. (2010) Patterns of Gregarine Parasitism in Dragonflies: Host, Habitat and Seasonality. Parasitology Research, 107, 75-87.
https://doi.org/10.1007/s00436-010-1836-8
[55]  Marden, J. and Cobb, J. (2004) Territorial and Mating Success of Dragonflies That Vary in Muscle Power Output and Presence of Gregarine Gut Parasites. Animal Behavior, 68, 857-865.
https://doi.org/10.1016/j.anbehav.2003.09.019
[56]  Anigwe, C. (2018) Dragonfly Naiads as Potential Reservoir Hosts for the Infectious Amphibian Chytrid Fungus, Batrachochytrium dendrobatidis. Thesis, Arizona State University, Tempe.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413