全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Erratum to the Influence of Gaseous Pollutants on Silver Artifacts Tarnishing, Vol. 6 (2017), 135-148

DOI: 10.4236/ojap.2022.113004, PP. 47-61

Keywords: Silver, Artifacts, Atmospheric Corrosion, Gaseous Pollutants

Full-Text   Cite this paper   Add to My Lib

Abstract:

The original online version of this article Salem, Y. (2017) The Influence of Gaseous Pollutants on Silver Artifacts Tarnishing. Open Journal of Air Pollution, 6, 135-148. doi: 10.4236/ojap.2017.64011 unfortunately contains grammar mistakes. The author wishes to correct the errors.

The present work investigated the effect of common gaseous pollutants on silver artifacts. The study was carried out on coupons made of a silver alloy (91 silver and 9% copper) with chemical composition similar to ancient Egyptian silver artifacts. These coupons were exposed to gaseous pollutants such as sulfur dioxide, nitrogen dioxide, carbon dioxide, hydrogen sulfide and chlorine, each gas separately. The exposure period was four weeks inside a climate chamber with 10 PPM concentration of each gas. After each test, examinations by SEM and PM were used to evaluate the effect of each gas and observe the formed tarnish layers. The results revealed that all gases reacted with the surface except carbon dioxide. The formed tarnish layers varied in coverage and density rate, and the heaviest layer was of H2S coupons. The tested coupons were analyzed by XRD and the results revealed Ag2S, AgCl, Ag2SO4, Ag(NO3)3(NO)3, AgO and Ag2O as corrosion products.

References

[1]  Sanders, C.E., Verreault, D., Frankel, G.S. and Allen, H.C. (2015) The Role of Sulfur in the Atmospheric Corrosion of Silver. Journal of the Electrochemical Society, 162, 630-637.
https://doi.org/10.1149/2.0051512jes
[2]  Kim, H. (2003) Corrosion Process of Silver in Environments Containing 0.1 ppm H2S and 1.2 ppm NO2. Materials and Corrosion, 54, 243-250.
https://doi.org/10.1002/maco.200390053
[3]  Kleber, C., Wiesinger, R., Schnller, J., Hilfrich, U., Hutter, H. and Schreiner, M. (2008) Initial Oxidation of Silver Surfaces by S2- and S4-Species. Corrosion Science, 50, 1112-1121.
https://doi.org/10.1016/j.corsci.2007.12.001
[4]  Pope, D., Gibbens, H.R. and Moss, R.L. (1986) The Tarnishing of Silver at Naturally Occurring H2S and SO2 Levels. Corrosion Science, 8, 883-887.
https://doi.org/10.1016/S0010-938X(68)80141-6
[5]  Graedel, T.E., Franey, J.P., Gualtieri, G.J., Kammlott, G.W. and Malm, D.L. (1985) On the Mechanism of Silver and Copper Sulfidation by Atmospheric H2S and OCS. Corrosion Science, 25, 1163-1180.
https://doi.org/10.1016/0010-938X(85)90060-5
[6]  Derdall, G. and Hyne, J.B. (1979) The Production of H2S by Hydrolysis of Entrained COS in Hydrocarbon Liquids. Canadian Journal of Chemical Engineering, 57, 112-114.
https://doi.org/10.1002/cjce.5450570119
[7]  Lin, H. and Frankel, G.S. (2013) Accelerated Atmospheric Corrosion Testing of Ag. Corros, 69, 1060-1072.
https://doi.org/10.5006/0926
[8]  Guinement, J. and Fiaud, C. (1986) Laboratory Study of the Reaction of Silver and Copper with Some Atmospheric Pollutants. Proceedings of the 13th ICEC Conference, Pattaya, 28-29 December 2017, 383-390.
[9]  Abbott, W.H. (1987) The Development and Performance Characteristics of Mixed Flowing Gas Test Environments. IEEE Transactions on Components, Hybrids, and Manufacturing Technology, 11, 22-35.
[10]  Graedel, T.E. (1992) Corrosion Mechanisms for Silver Exposed to the Atmosphere. Journal of the Electrochemical Society, 139, 1963-1970.
https://doi.org/10.1149/1.2221162
[11]  Abbott, W.H. (1974) Effects of Industrial Air Pollutants on Electrical Contact Materials. IEEE Transactions on Parts, Hybrids, and Packaging, 10, 24-27.
https://doi.org/10.1109/TPHP.1974.1134830
[12]  Myers, M. (2009) Overview of the Use of Silver in Connector Applications. Technical Paper, Interconnection & Process Technology Tyco Electronics, Harrisburg, PA, 503-516.
[13]  Wan, Y., Wang, X., Wang, X., Li, Y., Sun, H. and Zhang, K. (2015) Determination and Generation of the Corrosion Compounds on Silver Exposed to the Atmospheres. International Journal of Electrochemical Science, 10, 2336-2354.
[14]  Abbott, W.H. (1968) The Influence of Environment on Tarnishing Reactions. Proceedings of the 4th ICEC Conference, Paris, 1968, 35-39.
[15]  Rice, D., Peterson, P., Rigby, E., Phipps, P., Cappell, R. and Tremoureaux, R. (1981) Atmospheric Corrosion of Copper and Silver. Journal of the Electrochemical Society, 128, 275-284.
https://doi.org/10.1149/1.2127403
[16]  Liang, D., Allen, H.C., Frankel, G.S., Chen, Z.Y., Kelly, R.G., Wu, Y. and Wyslouzil, B.E. (2010) Effects of Sodium Chloride Particles, Ozone, UV, and Relative Humidity on Atmospheric Corrosion of Silver. Journal of the Electrochemical Society, 157, 146-156.
https://doi.org/10.1149/1.3310812
[17]  Ingo, G.M., Angelini, E., Riccucci, C., de Caro, T., Mezzi, A., Faraldi, F., Caschera, D., Giuliani, C. and Di Carlo, G. (2015) Indoor Environmental Corrosion of Ag-Based Alloys in the Egyptian Museum (Cairo, Egypt). Applied Surface Science, 326, 222-235.
https://doi.org/10.1016/j.apsusc.2014.11.135
[18]  Wan, Y., Macha, E.N. and Kelly, R.G. (2012) Modification of ASTM B117 Salt Spray Corrosion Test and Its Correlation to Field Measurements of Silver Corrosion. Corrosion, 68.
https://doi.org/10.5006/1.3693699
[19]  Novakovic, J., Georgiza, E. and Vassiliou, P. (2013) Nano-Alumina Modified Acrylic Coatings for Silver Protection. School of Chemical Engineering, NTUA, Athens, 23-25.
[20]  Al-Saad, Z. and Bani Hani, M. (2007) Corrosion Behavior and Preservation of Islamic Silver Alloy Coins.
[21]  Vassilio, P. and Gouda, V. (2013) Ancient Silver Artefacts: Corrosion Processes and Preservation Strategies. Corrosion and Conservation of Cultural Heritage Metallic Artefacts. In: European Federation of Corrosion (EFC) Series, Woodhead Publishing Limited and CRC Press, Oxford, 213-235.
https://doi.org/10.1533/9781782421573.3.213
[22]  Gale, N.H. and Stos-Gale, Z.A. (1981) Ancient Egyptian Silver. The Journal of Egyptian Archaeology, 67, 103-115.
https://doi.org/10.2307/3856605
[23]  Lucas, A. (2011) Ancient Egyptian Materials and Industries. 4th Edition, Dover Publications, London.
[24]  Abu-Baker, A.N., MacLeod, I.D., Sloggett, R. and Taylor, R. (2013) A Comparative Study of Salicylaldoxime, Cysteine and Benzotriazole as Inhibitors for the Active Chloride-Based Corrosion of Copper and Bronze Artifacts. European Scientific Journal, 9, 1857-7881.
[25]  ASTM D5116 (1997) Standard Guide for Small-Scale Environmental Chamber Determinations of Organic Emissions from Indoor Materials/Products.
[26]  Young, J.F. (1967) Humidity Control in the Laboratory Using Salt Solutions—A Review. Journal of Applied Chemistry, 17, 241-245.
https://doi.org/10.1002/jctb.5010170901
[27]  Kim, M.N., Yu, H.S. and Lee, S.E. (2003) A Small Chamber Test and Oddy Test on Medium Density Fiberboard Grade (E0, E1). Indoor Air Quality in Museums and Historic Properties University of East Anglia, Norwich.
[28]  Kim, S., Kim, J.A., An, J.Y., Kim, H.J., Kim, S.D. and Park, J.C. (2007) TVOC and Formaldehyde Emission Behaviors from Flooring Materials Bonded with Environmental-Friendly MF/PVAc Hybrid Resins. Indoor Air, 17, 404-415.
https://doi.org/10.1111/j.1600-0668.2007.00488.x
[29]  Wiesinger, R., Martina, I., Kleber, C. and Schreiner, M. (2013) Influence of Relative Humidity and Ozone on Atmospheric Silver Corrosion. Corrosion Science, 77, 69-76.
https://doi.org/10.1016/j.corsci.2013.07.028
[30]  Bernard, M.C., Dauvergne, E., Evesque, M., Keddam, M. and Takenouti, H. (2005) Reduction of Silver Tarnishing and Protection against Subsequent Corrosion. Corrosion Science, 47, 663-679.
https://doi.org/10.1016/j.corsci.2013.07.028
[31]  Lin, H., Frankel, G.S. and Abbott, W.H. (2013) Analysis of Ag Corrosion Products. Journal of the Electrochemical Society, 160, 345-355.
https://doi.org/10.1149/2.055308jes
[32]  Franey, J.P., Kammlott, G.W. and Graedel, T.E. (1985) The Corrosion of Silver by Atmospheric Sulfurous Gases. Corrosion Science, 25, 133-143.
https://doi.org/10.1016/0010-938X(85)90104-0
[33]  Sasaki, T., Kanagawa, R., Ohtsuka, T. and Miura, K. (2003) Corrosion Products of tin in Humid Air Containing Sulfur Dioxide and Nitrogen Dioxide at Room Temperature. Corrosion Science, 45, 847-854.
https://doi.org/10.1016/S0010-938X(02)00151-8
[34]  Tran, T.T.M., Fiaud, C. and Sutter, E.M.M. (2005) Oxide and Sulphide Layers on Copper Exposed to H2S Containing Moist Air. Corrosion Science, 47, 1724-1737.
https://doi.org/10.1016/j.corsci.2004.08.019
[35]  Seo, M., Ishikawa, Y., Kodaira, M., Sugimoto, A., Nakayama, S., Watanabe, M., Furuya, S., Minamitani, R., Miyata, Y., Nishikata, A. and Notoya, T. (2005) Cathodic Reduction of the Duplex Oxide Films Formed on Copper in Air with High Relative Humidity at 60°C. Corrosion Science, 47, 2079-2090.
https://doi.org/10.1016/j.corsci.2004.09.016
[36]  Niklasson, A., Johansson, L.G. and Svensson, J.E. (2007) Atmospheric Corrosion of Lead: The Influence of Formic Acid and Acetic Acid Vapors. Journal of the Electrochemical Society, 154, 618-625.
https://doi.org/10.1149/1.2775173
[37]  Lenglet, M., Lopitaux, J., Leygraf, L., Odnevall, I., Carballeira, M., Noualhaguet, J.C., Guinement, J., Gautier, J. and Boissel, J. (1995) Analysis of Corrosion Products Formed on Copper in Cl2/H2S/NO2 Exposure. Journal of the Electrochemical Society, 142, 3690-3696.
https://doi.org/10.1149/1.2775173
[38]  Astrup, T., Wadsak, M., Leygraf, C. and Schreinerb, M. (2000) In Situ Studies of the Initial Atmospheric Corrosion of Copper Influence of Humidity, Sulfur Dioxide, Ozone and Nitrogen Dioxide. Journal of the Electrochemical Society, 147, 2543-2551.
https://doi.org/10.1149/1.1393566
[39]  Samie, F., Tidblad, J., Kucera, V. and Leygraf, C. (2005) Atmospheric Corrosion Effects of HNO3-Method Development and Results on Laboratory Exposed Copper. Atmospheric Environment, 39, 7362-7373.
https://doi.org/10.1149/1.1393566
[40]  Rickett, B.I. and Payer, J.H. (1995) Composition of Copper Tarnish Products Formed in Moist Air with Trace Levels of Pollutant Gas: Hydrogen Sulfide and Sulfur Dioxide/Hydrogen Sulfide. Journal of the Electrochemical Society, 142, 3723-3728.
https://doi.org/10.1149/1.2048404
[41]  Rickett, B.I. and Payer, J.H. (1995) Composition of Copper Tarnish Products Formed in Moist Air with Trace Levels of Pollutant Gas: Sulfur Dioxide and Sulfur Dioxide/Nitrogen Dioxide. Journal of the Electrochemical Society, 142, 3713-3722.
https://doi.org/10.1149/1.2048403
[42]  Tétreault, J., Cano, E., Bommel, M., Scott, D., Dennis, M., Barthés, L., Minel, L. and Robbio, L. (2003) Corrosion of Copper and Lead by Formaldehyde, Formic and Acetic Acid Vapours. Studies in Conservation, 48, 237-250.
https://doi.org/10.1179/sic.2003.48.4.237
[43]  Lopez-Delgado, A., Cano, E., Bastidas, J. and López, F. (2001) A Comparative Study on Copper Corrosion Originated by Formic and Acetic Acid Vapours. Journal of Materials Science, 36, 5203-5211.
https://doi.org/10.1023/A:1012497912875
[44]  Samie, F., Tidblad, J., Kucera, V. and Leygraf, C. (2007) Atmospheric Corrosion Effects of HNO3-Comparison of Laboratory-Exposed Copper, Zinc and Carbon Steel. Atmospheric Environment, 41, 4888-4896.
https://doi.org/10.1016/j.atmosenv.2007.02.007
[45]  Castano, J.G., de la Fuente, D. and Morcillo, M. (2007) A Laboratory Study of the Effect of NO2 on the Atmospheric Corrosion of Zinc. Atmospheric Environment, 41, 8681-8696.
https://doi.org/10.1016/j.atmosenv.2007.07.022
[46]  Oesch, S. and Faller, M. (1997) Environmental Effects on Materials: The Effect of the Air Pollutants SO2, NO2, NO and O3 on the Corrosion of Copper, Zinc and Aluminium. A Short Literature Survey and Results of Laboratory Exposures. Corrosion Science, 39, 1505-1530.
https://doi.org/10.1016/S0010-938X(97)00047-4
[47]  Strandberg, H. and Johansson, L.G. (1997) Role of O3 in the Atmospheric Corrosion of Copper in the Presence of SO2. Journal of the Electrochemical Society, 144, 2334-2342.
https://doi.org/10.1149/1.1837814
[48]  Eriksson, P. and Johansson, L.G. (1986) The Role of NO2 in the Atmospheric Corrosion of Different Metals. Proceeding of 10th Scandinavian Corrosion Congress, Stockholm, 43.
[49]  Campin, M.J. (2003) Microstructural Investigation of Copper Corrosion: Influence of Humidity. Ph.D. Dissertation, New Mexico State University, Las Cruces.
[50]  Mariaca, L., de la Fuente, D., Feliu, S., Simancas, J., Gonzalez, J.A. and Morcillo, M. (2008) Interaction of Copper and NO2: Effect of Joint Presence of SO2, Relative Humidity and Temperature. Journal of Physics and Chemistry of Solids, 69, 895-904.
https://doi.org/10.1016/j.jpcs.2007.10.003
[51]  Wikipedia (2017) Hydrogen Sulfide.
https://en.wikipedia.org/wiki/Hydrogen_sulfide
[52]  Wikipedia (2017) Chlorine.
https://en.wikipedia.org/wiki/Chlorine#cite_ref-Greenwood789_7-1
[53]  Vonderbrink, S.A. (2006) Laboratory Experiments for Advanced Placement Chemistry. 2nd Edition, Flinn Scientific, Inc., Batavia, 87.
[54]  Martina, I., Wiesinger, R., Simbürger, D.J. and Schreiner, M. (2012) Micro-Raman Characterization of Silver Corrosion Products: Instrumental Set Up and Reference Darabase. Preservation Science, 9, 1-8.
[55]  Sharma, S.P. (1978) Atmospheric Corrosion of Silver, Copper, and Nickel-Environmental Test. Journal of the Electrochemical Society, 125, 2005-2011.
https://doi.org/10.1016/j.jpcs.2007.10.003
[56]  Volpe, L. and Peterson, P.J. (1989) The Atmospheric Sulfidation of Silver in a Tubular Corrosion Reactor. Corrosion Science, 29, 1179-1196.
https://doi.org/10.1016/0010-938X(89)90065-6

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133