全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Including Planet 9 in the Solar System Increases the Coherence between the Sunspot Number Record and Solar Inertial Motion

DOI: 10.4236/ijaa.2022.123013, PP. 212-246

Keywords: Planet 9 Hypothesis, Planetary Hypothesis, Solar Inertial Motion, Reconstructed Sunspot Number, Phase Modulation of SSN, Future SSN Events

Full-Text   Cite this paper   Add to My Lib

Abstract:

The Sun would be subject to a significant variation of orbital motion about the solar system barycentre if a small planet is orbiting at a very large distance. This paper assesses if the Planet 9 hypothesis, the existence of a ninth planet, is consistent with the planetary hypothesis: the synchronisation of sunspot emergence to solar inertial motion (SIM) induced by the planets. We show that SIM would be profoundly affected if Planet 9 exists and that the hypothesised effect of SIM on sunspot emergence would be radically different from the effect of SIM due to the existing eight planets. We compare the frequency and time variation of Sun to barycentre distance, RB, calculated for both the eight and nine planet systems, with the frequency and time variation of sunspot number (SSN). We show that including Planet 9 improves the coherence between RB and SSN in the decadal, centennial and millennial time range. Additionally, as the variation of RB is sensitive to the longitude and period of Planet 9, it is possible to adjust both parameters to fit the variation of RB to the SSN record and obtain new estimates of the period and present longitude of Planet 9. Finally, we develop the hypothesis that planetary induced solar acceleration reduces meridional flow and consequently sunspot emergence thereby providing an explanation for the observed coincidence of grand solar minima with intervals of extreme solar acceleration.

References

[1]  Brown, M.E. and Batygin, K. (2021) The Orbit of Planet Nine. The Astronomical Journal, 162, Article No. 219.
https://doi.org/10.3847/1538-3881/ac2056
[2]  Napier, K.J., Gerdes, D.W., Lin, H.W., Hamilton, S.J., Bernstein, G.M., et al. (2021) No Evidence for Orbital Clustering in the Extreme Trans-Neptunian Objects. The Planetary Science Journal, 2, Article No. 59.
[3]  Holman, M.J. and Payne, M.J. (2016) Observational Constraints on Planet Nine: Astrometry of Pluto and Other Trans-Neptunian Objects. The Astronomical Journal, 152, Article No. 80.
https://doi.org/10.3847/0004-6256/152/4/80
[4]  Naess, S., Aiola, S., Battaglia, N., Bond, R.J., Calabrese, E., Bond, R.J., Calabrese, E., Choi, S.K., et al. (2021) The Atacama Cosmology Telescope: A Search for Planet 9. The Astronomical Journal, 923, Article No. 224.
https://doi.org/10.3847/1538-4357/ac2307
[5]  Charbonneau, P. (2010) The Planetary Hypothesis Revived. Nature, 493, 613-614.
https://doi.org/10.1038/493613a
[6]  Jose, P.D. (1965) Suns’s Motion and Sunspots. Astronomical Journal, 10, 193-200.
https://doi.org/10.1086/109714
[7]  Fairbridge, R.W. and Shirley, J.H. (1987) Prolonged Minima and the 179-yr Cycle of the SIM. Solar Physics, 110, 191-220.
https://doi.org/10.1007/BF00148211
[8]  Charvatova, I. (2000) Can the Origin of the 2400-Year Cycle of Solar Activity Be Caused by SIM. Annals of Geophysics, 18, 399-405.
https://doi.org/10.1007/s00585-000-0399-x
[9]  Abreu, J.A., Beer, J., Ferriz-Mas, A., McCracken, K.G. and Steinhilber, F. (2012) Is There a Planetary Influence on Solar Activity? Astronomy & Astrophysics, 548, Article No. A88.
https://doi.org/10.1051/0004-6361/201219997
[10]  Scafetta, N. (2012) Does the Sun Work as a Nuclear Fusion Amplifier of Planetary Tidal Forcing? A Proposal for a Physical Mechanism Based on Mass-Luminosity Relation. Journal of Atmospheric and Solar-Terrestrial Physics, 81-82, 27-40.
https://doi.org/10.1016/j.jastp.2012.04.002
[11]  Scafetta, N. and Willson, R.C. (2013) Empirical Evidences for a Planetary Modulation of Total Solar Irradiance and the TSI Signature of the 1.09-Year Earth-Jupiter Conjunction Cycle. Astrophysics and Space Science, 348, 25-39.
https://doi.org/10.1007/s10509-013-1558-3
[12]  Wilson, I.R.G. (2013) The Venus-Earth-Jupiter Spin Orbit Coupling Model. Pattern Recognition in Physics, 1, 147-158. https://doi.org/10.5194/prp-1-147-2013
[13]  Scafetta, N., Milani, F., Bianchini, A. and Ortalani, S. (2016) On the Astronomical Origin of the Hallstaat Oscillation in Radiocarbon and Climate Records Throughout the Holocene. Earth-Science Reviews, 162, 24-43.
https://doi.org/10.1016/j.earscirev.2016.09.004
[14]  Charvatova, I. (2009) Long Term Predictive Assessments of Solar and Geomagnetic Activities Made on the Basis of the Close Similarity Between the Solar Inertial Motions in the Intervals 1840-1905 and 1980-2045. New Astronomy, 14, 25-30.
https://doi.org/10.1016/j.newast.2008.04.005
[15]  Cionco, R.G. and Soon, W. (2015) A Phenomenological Study of the Timing of Solar Activity Minima of the Last Millennium through a Physical Modeling of the Sun-Planets Interaction. New Astronomy, 14, 164-171.
https://doi.org/10.1016/j.newast.2014.07.001
[16]  Stefani, F., Giesecke, A., Seilmayer, M., Stepanov, R. and Weir, T. (2020) Schwabe, Gleissberg, Suess-De Vries: Towards a Consistent Model of Planetary Synchronization of Solar Cycles. Magnetohydrodynamics, 56, 269-280.
https://doi.org/10.22364/mhd.56.2-3.18
[17]  Usoskin, I.G., Sokoloff, D. and Moss, D. (2009) Grand Minima of Solar Activity and the Mean-Field Dynamo. Solar Physics, 254, 345-355.
https://doi.org/10.1007/s11207-008-9293-6
[18]  Charbonneau, P. (2020) Dynamo Models of the Solar Cycle. Living Reviews in Solar Physics, 17, Article No. 4.
https://doi.org/10.1007/s41116-020-00025-6
[19]  Tan, B. and Cheng, Z. (2012) Themid-Term and Long-Term Solar Quasi-Periodic Cycles and the Possible Relationship to Planetary Motions. Astrophysics and Space Science, 343, 511-521.
https://doi.org/10.1007/s10509-012-1272-6
[20]  Eddy, J.A. (1976) The Maunder Mimimum. Science, 192, 1189-1202.
https://doi.org/10.1126/science.192.4245.1189
[21]  Steinhilber, F., Abreu, J.A., Beer, J., Brunner, I., Christl, M., Fischer, H., et al. (2012) 9,400 Years of Cosmic Radiation and Solar Activity from Ice Cores and Tree Rings. Proceedings of the National Academy of Sciences of the United States of America, 109, 5967-5971.
https://doi.org/10.1073/pnas.1118965109
[22]  Usoskin, I.G., Gallet, Y., Lopes, F., Kovaltsov, G.A. and Hulot, G. (2016) Solar Activity during the Holocene: The Hallstatt Cycle and Its Consequence for Grand Minima and Maxima. Astronomy & Astrophysics, 587, Article No. A150.
https://doi.org/10.1051/0004-6361/201527295
[23]  Dikpaki, M. and Gilman, P.A. (2006) Simulating and Predicting Solar Cycles Using a Flux-Transport Dynamo. The Astrophysical Journal, 649, 498-514.
https://doi.org/10.1086/506314
[24]  Zaqarashvili, T.V., Carbonell, M., Oliver, R. and Ballester, J.L. (2010) Quasi-Biennial Oscillations in the Solar Tacholine Caused by Magnetic Rossby Wave Instabilities. The Astrophysical Journal Letters, 724, L95-L98.
https://doi.org/10.1088/2041-8205/724/1/L95
[25]  Tobias, S., Hughes, D. and Weiss, N. (2006) Unpredictable Sun Leaves Researchers in the Dark. Nature, 442, 26.
https://doi.org/10.1038/442026c
[26]  Weiss, N.O. and Tobias, S.M. (2016) Supermodulation of the Sun’s Magnetic Activity: The Effects of Symmetry Changes. Monthly Notices of the Royal Astronomical Society, 456, 2654-2661.
https://doi.org/10.1093/mnras/stv2769
[27]  Beer, J., Tobias, S.M. and Weiss, N.O. (2018) On the Long Term Modulation of the Sun’s Magnetic Cycle. Monthly Notices of the Royal Astronomical Society, 473, 1596-1602.
https://doi.org/10.1093/mnras/stx2337
[28]  Liang, Z.-C., Gizon, L., Birch, A.C. and Thomas, L.D. (2019) Time-Distance Helioseismology of Solar Rossby Waves. Astronomy & Astrophysics, 626, Article No. A3.
https://doi.org/10.1051/0004-6361/201834849
[29]  Karak, B.B. and Choudhuri, A.R. (2013) Studies of Grand Minima in Sunspot Cycles by Using a Flux Transport Solar Dynamo Model. Research in Astronomy and Astrophysics, 13, 1339-1357.
https://doi.org/10.1088/1674-4527/13/11/005
[30]  Wolff, C.L. and Patrone, P.N. (2010) A New Way that Planets Can Affect the Sun. Solar Physics, 266, 227-246.
https://doi.org/10.1007/s11207-010-9628-y
[31]  Landscheidt, T. (1999) Extrema in Sunspot Cycle Linked to Sun’s Motion. Solar Physics, 189, 413-424.
https://doi.org/10.1023/A:1005287705442
[32]  McCracken, K.G., Beer, J. and Steinhilber, F. (2014) Evidence for Planetary Forcing of the Cosmic Ray Intensity and Solar Activity Throughout the Past 9400 Years. Solar Physics, 289, 3207-3229.
https://doi.org/10.1007/s11207-014-0510-1
[33]  Charvatova, I. (2009) Long-Term Predictive Assessments of Solar and Geomagnetic Activities Made on the Basis of the Close Similarity Between the Solar Inertial Motions in the Intervals 1840-1905 and 1980-2045. New Astronomy, 14, 25-30.
https://doi.org/10.1016/j.newast.2008.04.005
[34]  Cionco, R.G. and Pavlov, D.A. (2018) Solar Barycentric Dynamics from a New Solar-Planetary Ephemeris. Astronomy & Astrophysics, 615, Article No. A153.
https://doi.org/10.1051/0004-6361/201732349
[35]  Charvatova, I. and Hejda, P. (2014) Responses of the Basic Cycles of 178.7 and 2402 Yr in Solar Terrestrial Phenomena during the Holocene. Pattern Recognition in Physics, 2, 21-26.
https://doi.org/10.5194/prp-2-21-2014
[36]  Brown, M.E., Trujillo, C. and Rabinowitz, D. (2004) Discovery of a Planetary-Sized Object in the Scattered Kuiper Belt. The Astrophysical Journal, 617, 645-649.
https://doi.org/10.1086/422095
[37]  Trujillo, C.A. and Sheppard, S.S. (2014) A Sedna-Like Body with a Perihelion of 80 Astronomical Units. Nature, 507, 471-474.
https://doi.org/10.1038/nature13156
[38]  Batygin, K. (2016) Pathway to Planet Nine. Physics World, 29, 28-31.
https://doi.org/10.1088/2058-7058/29/7/33
[39]  Bailey, E., Batygin, K. and Brown, M.E. (2016) Solar Obliquity Induced by Planet Nine. The Astronomical Journal, 152, Article No. 126.
https://doi.org/10.3847/0004-6256/152/5/126
[40]  Batygin, K., Adams, F.C., Brown, M.E. and Becker, J.C. (2019) The Planet Nine Hypothesis. Physics Reports, 805, 1-53.
https://doi.org/10.1016/j.physrep.2019.01.009
[41]  Svalgaard, L. and Schatten, K.H. (2016) Reconstruction of the Sunspot Group Number: The Backbone Method. Solar Physics, 291, 2653-2684.
https://doi.org/10.1007/s11207-015-0815-8
[42]  Perryman, M.A.C. and Schulze-Hartung, T. (2018) The Barycentric Motion of Exoplanet Host Stars. Tests of Solar Spin-Orbit Coupling. Astronomy & Astrophysics, 525, Article No. A65.
https://doi.org/10.1051/0004-6361/201015668
[43]  Stefani, F., Beer, J., Giesecke, A., Gloaguen, T., Sellmeyer, M., Stepanov, R. and Weier, T. (2020A) Phase Coherence and Phase Jumps in the Schwabe Cycle. Astronomische Nachrichten, 341, 600-615.
[44]  Usoskin, I.G., Solanki, S.K. and Kovaltsov, G.A. (2007) Grand Minima and Maxima of Solar Activity: New Observational Constraints. Astronomy & Astrophysics, 471, 301-309.
https://doi.org/10.1051/0004-6361:20077704
[45]  Usoskin, I.G., Solanki, S.K., Krivova, N.A., Hofer, B., Kovalstov, G.A., Wacker, L. et al. (2021) Solar Activity Over the Last Millennium Reconstructed from Annual 15C Data. Astronomy & Astrophysics, 649, Article No. A141.
https://doi.org/10.1051/0004-6361/202140711
[46]  Duhau, S. and De Jager, C. (2010) The Forthcoming Grand Minimum of Solar Activity. Journal of Cosmology, 8, 1983-1999.
[47]  Feynman, J. and Ruzmaikin, A. (2014) The Centennial Gleissberg Cycle and Its Association with Extended Minima. Journal of Geophysical Research: Space Physics, 119, 6027-6041.
https://doi.org/10.1002/2013JA019478
[48]  Shepherd, S.J., Zharkova, S.I. and Zharkova, V.V. (2014) Prediction of Solar Activity from Solar Background Magnetic Field Variations in Cycles 21-23. The Astrophysical Journal, 795, 46-54.
https://doi.org/10.1088/0004-637X/795/1/46
[49]  Morner, N.-A. (2015) The Approaching New Grand Solar Minimum and Little Ice Age Climate Conditions. Natural Science, 7, 510-518.
https://doi.org/10.4236/ns.2015.711052
[50]  Zharkova, V. (2020) Modern Grand Solar Minimum Will Lead to Terrestrial Cooling. Temperature, 7, 217-222.
https://doi.org/10.1080/23328940.2020.1796243
[51]  Rahmanifard, F., Jordan, A.P., De Wet, W.C., Schwadron, N.A., Wilson, J.K., Owens, M.J., et al. (2022) Evidence from Galactic Cosmic Rays That the Sun Has Likely Entered a Secular Minimum in Solar Activity. Space Weather, 20, Article ID: E2021SW002796.
https://doi.org/10.1029/2021SW002796
[52]  Vasiliev, S.S. and Dergachev, V.A. (2002) The 2400-Year Cycle in Atmospheric Radiocarbon Concentration: Bispectrum of 14C Data Over the Last 8000 Years. Annals of Geophysics, 20, 115-120.
https://doi.org/10.5194/angeo-20-115-2002
[53]  Inceoglu, F., Simoniello, R., Knudsen, M.F., Karoff, C., Olsen, J., Turek-Chieze, S. and Jacobsen, B.H. (2015) Grand Solar Minima and Maxima Deduced from 10Be and 14C: Magnetic Dynamo Configuration and Polarity Reversal. Astronomy & Astrophysics, 577, Article No. A20.
https://doi.org/10.1051/0004-6361/201424212
[54]  Vecchio, A., F. Lepreti, F., Laurenza, M., Alberti, T. and Carbone, V. (2017) Connection between Solar Activity Cycles and Grand Minima Generation. Astronomy & Astrophysics, 599, Article No. A58.
https://doi.org/10.1051/0004-6361/201629758
[55]  Viaggi, P. (2021) Quantitative Impact of Astronomical and Sun-Related Cycles on the Pleistocene Climate System from Antarctica Records. Quaternary Science Advances, 4, Article ID: 100037.
https://doi.org/10.1016/j.qsa.2021.100037
[56]  Wu, C.-J., Usoskin, I. G, Krivova, N.A., Kovaltsov, G.A., Baroni, M., Bard E., Solanki, S.K. (2018) Solar Activity Over Nine Millennia: A Consistent Multi-Proxy Reconstruction. Astronomy & Astrophysics, 615, Article No. A93.
https://doi.org/10.1051/0004-6361/201731892
[57]  Scafetta, N. (2010) Empirical Evidence for a Celestial Origin of the Climate Oscillations and Its Implications. Journal of Atmospheric and Solar-Terrestrial Physics, 72, 951-970.
https://doi.org/10.1016/j.jastp.2010.04.015
[58]  Perez-Peraza, J., Velasco, V., Libin, I.Y. and Yudakhin, K.E. (2012) Thirty Year Periodicity in Cosmic Rays. Advances in Astronomy, 2012, Article ID: 691408.
https://doi.org/10.1155/2012/691408
[59]  Damon, P.E. and Peristykh, A.N. (2000) Radiocarbon Calibration and Application of Geophysics, Solar Physics, and Astrophysics. Radiocarbon, 42, 137-150.
https://doi.org/10.1017/S0033822200053108
[60]  Peristykh, A.N. and Damon, P.E. (2003) Persistence of the Gleissberg 88-Year Cycle over the Last 12,000 Years: Evidence from Cosmogenic Isotopes. Journal of Geophysical Research, 108, 1003-1018.
https://doi.org/10.1029/2002JA009390
[61]  Takalo, J. and Mursula, K. (2002) Annual and Solar Rotation Periodicities in IMF Components: Evidence for Phase/Freqyency Modulation. Geophysical Research Letters, 29, 1317-1321.
https://doi.org/10.1029/2002GL014658
[62]  Rial, J.A. (2004) Earth’s Orbital Eccentricity and the Rhythm of the Pleistocene Ice Ages: The Concealed Pacemaker. Global and Planetary Change, 41, 81-93.
https://doi.org/10.1016/j.gloplacha.2003.10.003
[63]  Knudsen, M.F., Riisager, P., Jacobsen, B.H., Muscheler, R., Snowball, I. and Seidenkrantz, M.-S. (2009) Taking the Pulse of the Sun during the Holocene by Joint Analysis of 14C and 10Be. Geophysical Research Letters, 36, Article No. L16701.
https://doi.org/10.1029/2009GL039439
[64]  Inceoglu, F., Simoniello, R., Knudsen, M.F., Karoff, C., Olsen, J. and Turck-Chièze, S. (2016) On the Current Solar Magnetic Activity in the Light of Its Behaviour during the Holocene. Solar Physics, 291, 303-315.
https://doi.org/10.1007/s11207-015-0805-x
[65]  Inceoglu, F., Arlt, R. and Rempel, M. (2017) The Nature of Grand Minima and Maxima from Fully Nonlinear Flux Transport Dynamos. The Astrophysical Journal, 848, Article No. 93.
https://doi.org/10.3847/1538-4357/aa8d68
[66]  Lockwood, M. (2010) Solar Change and Climate: An Update in the Light of the Current Exceptional Solar Minimum. Proceedings of the Royal Society A, 466, 303-329.
https://doi.org/10.1098/rspa.2009.0519
[67]  Feulner, G. and Rahmsdorf, F. (2010) on the Effect of a New Grand Minimum of Solar Activity on the Future Climate on Earth. Geophysical Research Letters, 37, Article No. L05707.
https://doi.org/10.1029/2010GL042710
[68]  Meehl, G.A., Arblaster, J.M. and Marsh, D.R. (2013) Could a Future “Grand Solar Minimum” Like the Maunder Minimum Stop Global Warming? Geophysical Research Letters, 40, 1789-1793.
https://doi.org/10.1002/grl.50361
[69]  Ineson, S., Maycock, A.C., Gray, L.J., Scaife, A.A., Dunstone, N.J., Harder, J.W., et al. (2015) Regional Climate Impacts of a Possible Future Grand Solar Minimum. Nature Communications, 6, Article No. 7535. https://doi.org/10.1038/ncomms8535
[70]  Velasco Herrera, V.M., Perez-Peraza, J., Soon, W. and Marquez-Adame, J.C. (2018) The Quasi-Biennial Oscillation of 1.7 Years in Ground Level Enhancement Events. New Astronomy, 60, 7-13. https://doi.org/10.1016/j.newast.2017.09.007
[71]  Sharp, G.J. (1013) Are Uranus and Neptune Responsible for Solar Grand Minima and Solar Cycle Modulation? International Journal of Astronomy and Astrophysics, 3, 260-273. https://doi.org/10.4236/ijaa.2013.33031
[72]  De Jager, C. and Versteegh, G.J.M. (2005) Do Planetary Motions Drive Solar Variability. Solar Physics, 229, 175-179. https://doi.org/10.1007/s11207-005-4086-7
[73]  Wang, Y.-M. and Sheeley, N.R. (2003) Modelling the Sun’s Large-Scale Magnetic Field during the Maunder Minimum. The Astrophysical Journal, 591, 1248-1256.
https://doi.org/10.1086/375449
[74]  Karak, B.B. (2010) Importance of Meriodional Circulation in Flux Transport Dynamo: The Possibility of a Maunder-Like Grand Minimum. The Astrophysical Journal, 724, 1021-1029. https://doi.org/10.1088/0004-637X/724/2/1021
[75]  Choudhuri, A.R. (2020) The Meridional Circulation of the Sun: Observations, Theory and Connections with the Solar Dynamo. Science China: Physics, Mechanics and Astronomy, 64, Article No. 239601.
https://doi.org/10.1007/s11433-020-1628-1
[76]  Miyahara, H., Tokanai, F., Moriya, T., Takeyama, M., et al. (2021) Gradual Onset of the Maunder Minimum Revealed by High-Precision Carbon-14 Analyses. Scientific Reports, 11, Article No. 5482. https://doi.org/10.1038/s41598-021-84830-5
[77]  Brandenburg, A. and Spiegel, E.A. (2008) Modelling a Maunder Minimum. Astronomische Nachrichten, 329, 351-359. https://doi.org/10.1002/asna.200810973
[78]  Hathaway, D.H. and Rightmire, L. (2010) Variations in the Sun’s Meridional Flow over a Solar Cycle. Science, 327, 1350. https://doi.org/10.1126/science.1181990
[79]  Mahajan, S.S., Hathaway, D.H., Munoz-Jaramillo, A. and Martens, P.C. (2021) Improved Measurements of the Sun’s Meridional Flow and Torsional Oscillation from Correlation Trackingon MDI and HMI Magnetograms. The Astrophysical Journal, 917, Article No. 100. Arxiv:2107.07731https://doi.org/10.3847/1538-4357/ac0a80
[80]  Passos, D. and Lopes, I. (2008) A Low-Order Solar Dynamo Model: Inferred Meridional Circulation Variations Since 1750. The Astrophysical Journal, 686, 1420-1425.
https://doi.org/10.1086/591511
[81]  McIntosh, S.W. and Leamon, R.J. (2015) Deciphering Solar Magnetic Activity: On Grand Minima in Solar Activity. Frontiers in Astronomy and Space Sciences, 2, Article No. 2. https://doi.org/10.3389/fspas.2015.00002
[82]  Callebaut, D.K., De Jager, C. and Duhau, S. (2012) The Influence of Planetary Attractions on the Solar Tacholine. Journal of Atmospheric and Solar-Terrestrial Physics, 80, 73-78. https://doi.org/10.1016/j.jastp.2012.03.005

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413