全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Analytical Study of the Electroosmotic Flow of Two Immiscible Power-Law Fluids in a Microchannel

DOI: 10.4236/ojfd.2022.123013, PP. 263-276

Keywords: Two-Liquid Electroosmotic Flow, Non-Newtonian Fluids, Circular Wall Effect, Electrokinetic Width, Flow Behavior Index

Full-Text   Cite this paper   Add to My Lib

Abstract:

The multilayer microchannel flow is a promising tool in microchannel-based systems such as hybrid microfluidics. To assist in the efficient design of two-liquid pumping system, a two-fluid electroosmotic flow of immiscible power-law fluids through a microtube is studied with consideration of zeta potential difference near the two-liquid interface. The modified Cauchy momentum equation in cylindrical coordinate governing the two-liquid velocity distributions is solved where both peripheral and inner liquids are represented by power-law model. The two-fluid velocity distribution under the combined interaction of power-law rheological effect and circular wall effect is evaluated at different viscosities and different electroosmotic characters of inner and peripheral power-law fluids. The velocity of inner flow is a function of the viscosities, electric properties and electroosmotic characters of two power-law fluids, while the peripheral flow is majorly influenced by the viscosity, electric property and electroosmotic characters of peripheral fluid. Irrespective of the configuration manner of power-law fluids, the shear thinning fluid is more sensitive to the change of other parameters.

References

[1]  Figeys, D. and Pinto, D. (2000) Labon-a-Chip: A Revolution in Biological and Medical Sciences. Analytical Chemistry, 72, 330A-335A.
https://doi.org/10.1021/ac002800y
[2]  Laser, D.J. and Santiago, J.G. (2004) A Review of Micropumps. Journal of Micromechanics and Microengineering, 14, R35-R64.
https://doi.org/10.1088/0960-1317/14/6/R01
[3]  Bruus, H. (2008) Theoretical Microfluidics. Oxford University Press, Oxford.
[4]  Kang, Y.J., Yang, C. and Huang, X.Y. (2002) Dynamic Aspects of Electroosmotic Flow in a Cylindrical Microcapillary. International Journal of Engineering Science, 40, 2203-2221.
https://doi.org/10.1016/S0020-7225(02)00143-X
[5]  Kang, Y.J., Yang, C. and Huang, X.Y. (2002) Electroosmotic Flow in a Capillary Annulus with High Zeta Potentials. Journal of Colloid and Interface Science, 253, 285-294.
https://doi.org/10.1006/jcis.2002.8453
[6]  Bianchi, F., Ferrigno, R. and Girault, H.H. (2000) Finite Element Simulation of an Electroosmotic-Driven Flow Division at a t-Junction of Microscale Dimensions. Analytical Chemistry, 72, 1987-1993.
https://doi.org/10.1021/ac991225z
[7]  Marcos; Yang, C., Wong, T.N. and Ooi, K.T. (2004) Dynamic Aspects of Electroosmotic Flow in Rectangular Microchannels. International Journal of Engineering Science, 42, 1459-1481.
https://doi.org/10.1016/j.ijengsci.2003.07.012
[8]  Moghadam, A.J. (2012) An Exact Solution of ac Electro-Kinetic-Driven Flow in a Circular Micro-Channel. European Journal of Mechanics—B/Fluids, 34, 91-96.
https://doi.org/10.1016/j.euromechflu.2012.03.006
[9]  Moghadam, A.J. (2015) Thermal Characteristics of Time-Periodic Electroosmotic Flow in a Circular Microchannel. Heat and Mass Transfer, 51, 1461-1473.
https://doi.org/10.1007/s00231-015-1513-7
[10]  Das, S. and Chakraborty, S. (2006) Analytical Solutions for Velocity, Temperature and Concentration Distribution in Electroosmotic Microchannel Flows of a Non-Newtonian Bio-Fluid. Analytica Chimica Acta, 559, 15-24.
https://doi.org/10.1016/j.aca.2005.11.046
[11]  Deng, S.Y., Jian, Y.J., Bi, Y.H., Chang, L., Wang, H.J. and Liu, Q.S. (2012) Unsteady Electroosmotic Flow of Power-Law Fluid in a Rectangular Microchannel. Mechanics Research Communications, 39, 9-14.
https://doi.org/10.1016/j.mechrescom.2011.09.003
[12]  Zhu, Q.Y., Deng, S.Y. and Chen, Y.Q. (2014) Periodical Pressure-Driven Electrokinetic Flow of Power-Law Fluids through a Rectangular Microchannel. Journal of Non-Newtonian Fluid Mechanics, 203, 38-50.
https://doi.org/10.1016/j.jnnfm.2013.10.003
[13]  Misra, J.C., Shit, G.C., Chandra, S. and Kundu, P.K. (2011) Electro-Osmotic Flow of a Viscoelastic Fluid in a Channel: Applications to Physiological Fluid Mechanics. Applied Mathematics & Computation, 217, 7932-7939.
https://doi.org/10.1016/j.amc.2011.02.075
[14]  Jiménez, E., Escandón, J., Bautista, O. and Méndez, F. (2016) Start-Up Electroosmotic Flow of Maxwell Fluids in a Rectangular Microchannel with High Zeta Potentials. Journal of Non-Newtonian Fluid Mechanics, 227, 17-29.
https://doi.org/10.1016/j.jnnfm.2015.11.003
[15]  Ng, C.O. (2013) Combined Pressure-Driven and Electroosmotic Flow of Casson Fluid through a Slit Microchannel. Journal of Non-Newtonian Fluid Mechanics, 198, 1-9.
https://doi.org/10.1016/j.jnnfm.2013.03.003
[16]  Mondal, A. and Shit, G.C. (2017) Transport of Magneto-Nanoparticles during Electro-Osmotic Flow in a Micro-Tube in the Presence of Magnetic Field for Drug Delivery Application. Journal of Magnetism and Magnetic Materials, 442, 319-328.
https://doi.org/10.1016/j.jmmm.2017.06.131
[17]  Si, D.Q., Jian, Y.J., Chang, L. and Liu, Q.S. (2016) Unsteady Rotating Electroosmotic Flow through a Slit Microchannel. Journal of Mechanics, 32, 603-611.
https://doi.org/10.1017/jmech.2016.9
[18]  Datta, S., Ghosal, S. and Patankar, N.A. (2006) Electroosmotic Flow in a Rectangular Channel with Variable Wall Zeta-Potential: Comparison of Numerical Simulation with Asymptotic Theory. Electrophoresis, 27, 611-619.
https://doi.org/10.1002/elps.200500618
[19]  Kwon, K., Park, C.-W. and Kim, D. (2012) High-Flowrate, Compact Electroosmotic Pumps with Porous Polymer Track-Etch Membranes. Sensors and Actuators A: Physical, 175, 108-115.
https://doi.org/10.1016/j.sna.2011.12.050
[20]  Yao, S. and Santiago, J.G. (2003) Porous Glass Electroosmotic Pumps: Theory. Journal of Colloid and Interface Science, 268, 133-142.
https://doi.org/10.1016/S0021-9797(03)00731-8
[21]  Brask, A., Goranovic, G. and Bruus, H. (2003) Electroosmotic Pumping of Nonconducting Liquids by Viscous Drag from a Secondary Conducting Liquid. Proceedings NANOTECH, Vol. 1, 190-193.
[22]  Qi, C. and Ng, C.-O. (2018) Electroosmotic Flow of a Two-Layer Fluid in a Slit Channel with Gradually Varying Wall Shape and Zeta Potential. International Journal of Heat and Mass Transfer, 119, 52-64.
https://doi.org/10.1016/j.ijheatmasstransfer.2017.11.114
[23]  Gao, Y.D., Wong, T.N., Yang, C. and Ooi, K.T. (2005) Transient Two-Liquid Electroosmotic Flow with Electric Charges at the Interface. Colloids and Surfaces A, 266, 117-128.
https://doi.org/10.1016/j.colsurfa.2005.05.068
[24]  Su, J., Jian, Y.J., Chang, L. and Liu, Q.S. (2013) Transient Electro-Osmotic and Pressure Driven Flows of Two-Layer Fluids through a Slit Microchannel. Acta Mechanica Sinica, 29, 534-542.
https://doi.org/10.1007/s10409-013-0051-0
[25]  Choi, W., Sharma, A., Qian, S., Lim, G. and Joo, S.W. (2011) On Steady Two-Fluid Electroosmotic Flow with Full Interfacial Electrostatics. Journal of Colloid and Interface Science, 357, 521-526.
https://doi.org/10.1016/j.jcis.2011.01.107
[26]  Moghadam, A.J. (2016) Two-Fluid Electrokinetic Flow in a Circular Microchannel. International Journal of Engineering, Transactions A, 29, 1469-1477.
https://doi.org/10.5829/idosi.ije.2016.29.10a.18
[27]  Afonso, A.M., Alves, M.A. and Pinho, F.T. (2013) Analytical Solution of Two-Fluid Electro-Osmotic Flows of Viscoelastic Fluids. Journal of Colloid and Interface Science, 395, 277-286.
https://doi.org/10.1016/j.jcis.2012.12.013
[28]  Huang, Y., Li, H.W. and Wong, T.N. (2014) Two Immiscible Layers of Electro-Osmotic Driven Flow with a Layer of Conducting Non-Newtonian Fluid. International Journal of Heat and Mass Transfer, 74, 368-375.
https://doi.org/10.1016/j.ijheatmasstransfer.2014.02.068
[29]  Moghadam, A.J. and Akbarzadeh, P. (2019) AC Two-Immiscible-Fluid EOF in a Microcapillary. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41, 194-194.
https://doi.org/10.1007/s40430-019-1702-2
[30]  Liu, M., Liu, Y., Guo, Q. and Yang, J. (2009) Modeling of Electroosmotic Pumping of Nonconducting Liquids and Biofluids by a Two-Phase Flow Method. Journal of ElectroAnalytical Chemistry, 636, 86-92.
https://doi.org/10.1016/j.jelechem.2009.09.015
[31]  Xie, Z. and Jian, Y. (2018) Entropy Generation of Magnetohydrodynamic Electroosmotic Flow in Two-Layer Systems with a Layer of Non-Conducting Viscoelastic Fluid. International Journal of Heat and Mass Transfer, 127, 600-615.
https://doi.org/10.1016/j.ijheatmasstransfer.2018.07.065
[32]  Moghadam, A.J. (2013) Electrokinetic-Driven Flow and Heat Transfer of a Non-Newtonian Fluid in a Circular Microchannel. Journal of Heat Transfer, 135, Article ID: 021705.
https://doi.org/10.1115/1.4007542
[33]  Patel, M., Harish Kruthiventi, S.S. and Kaushik, P. (2020) Rotating Electroosmotic Flow of Power-Law Fluid through Polyelectrolyte Grafted Microchannel. Colloids and Surfaces B: Biointerfaces, 193, Article ID: 111058.
https://doi.org/10.1016/j.colsurfb.2020.111058
[34]  Deng, S.Y., Xiao, T. and Wu, S.M. (2021) Two-Layer Combined Electroosmotic and Pressure-Driven Flow of Power-Law Fluids in a Circular Microcapillary. Colloids and Surfaces A, 610, Article ID: 125727.
https://doi.org/10.1016/j.colsurfa.2020.125727
[35]  Zheng, J.X. and Jian, Y.J. (2018) Rotating Electroosmotic Flow of Two-Layer Fluids through a Microparallel Channel. International Journal of Mechanical Sciences, 136, 293-302.
https://doi.org/10.1016/j.ijmecsci.2017.12.039
[36]  Deng, S.Y. (2017) The Parametric Study of Electroosmotically Driven Flow of Power-Law Fluid in a Cylindrical Microcapillary at High Zeta Potential. Micromachines, 8, 344-357.
https://doi.org/10.3390/mi8120344

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413