全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Imaging Analysis of Trabecular Bone Texture Based on the Initial Slope of Variogram of Ultra-Distal Radius Digital X-Ray Imaging: Effects on Bone Mineral Density and Age

DOI: 10.4236/ojrad.2022.123009, PP. 78-85

Keywords: Trabecular Bone Texture, Digital X-Ray Image, Bone Mineral Density, Ultra-Distal Radius, Initial Slope of Variogram

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background: When applied to trabecular bone X-ray images, a method for analyzing trabecular bone texture based on the initial slope of variogram (ISV) was used to assess the trabecular bone health. Methodology: Data from more than two hundred subjects were retrospectively studied. For each subject, a DXA (GE Lunar Prodigy) scan of the forearm was performed, and bone mineral density (BMD) value was measured at the location of ultra-distal radius, X-ray digital image of the same forearm was taken on the same day, and ISV value over the same location of ultra-distal radius was calculated. Pearson’s correlation coefficients were calculated to examine the correlation between BMD and ISV of the trabecular bones located at the same ultra-distal radius. ISV values changed with subjects’ age were also reported. Results: The results show that ISV value was highly correlated with the DXA-measured BMD of the same trabecular bone located at the ultra-distal radius. The correlation coefficient between ISV and BMD with the 95% confident was 0.79 ± 0.09. They also demonstrated that the age-related changes in trabecular bone health and differentiated age patterns in males and females, respectively. The results showed that the decrease in BMD was accompanied by a decrease in the initial slope of variogram (ISV). Conclusions: This study suggests that ISV might be used to quantitatively evaluate trabecular health for osteoporosis and bone disease diagnosis.

References

[1]  WHO Study Group (1994) Assessment of Fracture Risk and Its Application to Screening for Postmenopausal Osteoporosis. World Health Organization Technical Report Series, Geneva.
[2]  Lin, J., Boechat, M.I., Deville, J.G., Gilsanz, D., Stiehm, R., Gilsanz, V., Salusky, I. and Nielsen-Saines, K. (2012) Quantitative Computerized Tomography (QCT) versus Dual X-Ray Absorptiometry (DXA) in the Assessment of Bone Mineral Density of HIV-1 Infected Children. World Journal of AIDS, 2, 306-311.
https://doi.org/10.4236/wja.2012.24041
[3]  Stone, K., Seeley, D., Lui, L., Cauley, J., Ensrud, K., Browner, W., Nevitt, M. and Cummings, S. (2003) BMD at Multiple Sites and Risk of Fracture of Multiple Types: Long-Term Results from the Study of Osteoporostic Fractures. Journal of Bone Minereral Research, 18, 1947-1954.
https://doi.org/10.1359/jbmr.2003.18.11.1947
[4]  Rice, J.C., Cowin, S.C. and Bowman, J.A. (2003) On the Dependence of the Elasticity and Strength of Cancellous Bone on Apparent Density. Journal of Biomechanics, 21, 155-168.
https://doi.org/10.1016/0021-9290(88)90008-5
[5]  Pothuaud, L., Carceller, P. and Hans, D. (2007) Correlations between Grey-Level Variations in 2D Projection Images (TBS) and 3D Microarchitecture: Applications in the Study of Human Trabecular Bone Microarchitecture. Bone, 42, 775-787.
https://doi.org/10.1016/j.bone.2007.11.018
[6]  Krueger, D., Fidler, E., Libber, J., Berengere, A., Hans, D. and Binkley, N. (2014) Spine Trabecular Bone Score Subsequent to Bone Mineral Density Improves Fracture Discrimination in Women. Journal of Clinical Densitom, 17, 60-65.
https://doi.org/10.1016/j.jocd.2013.05.001
[7]  Iki, M., Fujita, Y., Tamaki, J., Kouda, K., Yura, A., Sato, Y., Moon, J., Winzenrieth, R., Okamoto, N. and Kurumatani, N. (2015) Trabecular Bone Score May Improve FRAX1 Prediction Accuracy for Major Osteoporotic Fractures in Elderly Japanese Men: The Fujiwara-Kyo Osteoporosis Risk in Men (FORMEN) Cohort Study. Osteoporos International, 26, 1841-1848.
https://doi.org/10.1007/s00198-015-3092-3
[8]  Healthcare, G.E. (2010) Lunar enCORE-Based X-Ray Bone Densitometer User Manual.
[9]  Mukaka, M.M. and Corner, S. (2012) A Guide to Appropriate Use of Correlation Coefficient in Medical Research. Malawi Medical Journal, 24, 69-71.
[10]  Pothuaud, L. (2009) Method for Determining a Three-Dimensional Structure from a Two-Dimensional Image, in Particular a Bone Structure. United States Patent, US7609867B2.
[11]  Cheng, P., Qi, H., Di, W., Liu, J., Yu, J., Lv, S., Shen, Y., Zha, J., Cai, J., Lai, B. and Ding, G. (2016) Establishment of TBS Reference Plots and Correlation between TBS and BMD in Health Mainland Chinese Women. Archives of Osteoporosis, 11, Article No. 5.
https://doi.org/10.1007/s11657-015-0254-z

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413