全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Vibrational Spectroscopic Investigations, Electronic Properties, Molecular Structure and Quantum Mechanical Study of an Antifolate Drug: Pyrimethamine

DOI: 10.4236/cc.2022.104008, PP. 157-185

Keywords: Electronic Property, NMR, Pyrimethamine, Vibrational Spectrum

Full-Text   Cite this paper   Add to My Lib

Abstract:

The computational modelling supported by experimental results can explain the molecular structure, vibrational assignments, reactive sites and several structural properties. In this context, the spectroscopic (FT-IR, FT-Raman and NMR) analysis, electronic properties (HOMO and LUMO energies) and molecular structure of pyrimethamine (Pyr) were investigated by density functional theory (DFT) method associated with three levels of theory viz., B3LYP, MN15 and wB97XD with 6-311++G(d,p) and def2TZVPP as basis sets, respectively in the Gaussian 16 programs. The 1H and 13C NMR chemical shifts were calculated with a gauge-independent atomic orbital (GIAO) approach by also applying the same levels of theory and basis sets. All experimental results were compared with theoretical data. Although the results revealed high degrees of correlation between the theoretical and experimental values for spectroscopic properties using the three methods. Furthermore, the atomic and natural charges, energy band gap and chemical reactivity were determined, while the frontier molecular orbital (FMO) and molecular electrostatic potential (MEP) surfaces were plotted to explain the reactive nature of the title molecule.

References

[1]  Yuthavong, Y. (2013) Antifolate Drugs: Encyclopaedia of Malaria, Vol. 1-12. Springer Science + Business Media, New York.
https://doi.org/10.1007/978-1-4614-8757-9_2-1
[2]  Nzila, A. (2006) The Past, Present and Future of Antifolates in the Treatment of Plasmodium falciparum Infection. Journal of Antimicrobial Chemotherapy, 57, 1043-1054.
https://doi.org/10.1093/jac/dkl104
[3]  Muller, I.B. and Hyde, J.E. (2013) Folate Metabolism in Human Malaria Parasites—75 Years On. Molecular and Biochemical Parasitology, 188, 63-77.
https://doi.org/10.1016/j.molbiopara.2013.02.008
[4]  Pierdominici, M., Giammarioli, A.M., Gambardella, L., et al. (2005) Pyrimethamine (2,4-Diamino-5-p-chlorophenyl-6-ethylpyrimidine) Induces Apoptosis of Freshly Isolated Human T Lymphocytes, Bypassing CD95/Fas Molecule but Involving Its Intrinsic Pathway. Journal of Pharmacology and Experimental Therapeutics, 315, 1046-1057.
https://doi.org/10.1124/jpet.105.086736
[5]  Sardarian, A., Douglas, K.T., Read, M., Sims, P.F.G., et al. (2003) Pyrimethamine Analogs as Strong Inhibitors of Double and Quadruple Mutants of Dihydrofolate Reductase in Human Malaria Parasites. Organic & Biomolecular Chemistry, 1, 960-964.
https://doi.org/10.1039/b211636g
[6]  Schwalbe, C.H. and Cody, V. (2006) Structural Characteristics of Small-Molecule Antifolate Compounds. Crystallography Reviews, 12, 267-300.
https://doi.org/10.1080/08893110701337800
[7]  Sansom, C.E., Schwalbe, C.H., Lambert, P.A., et al. (1989) Structural Studies on Bio-Active Compounds. Part XV. Structure-Activity Relationships for Pyrimethamine and a Series of Diaminopyrimidine Analogues versus Bacterial Dihydrofolate Reductase. Biochimica et Biophysica Acta, 995, 21-27.
https://doi.org/10.1016/0167-4838(89)90228-8
[8]  Kongsaeree, P., Khongsuk, P., Leartsakulpanich, U., et al. (2005) Crystal Structure of Dihydrofolate Reductase from Plasmodium vivax: Pyrimethamine Displacement Linked with Mutation-Induced Resistance. Proceedings of the National Academy of Sciences of the United States of America, 102, 13046-13051.
https://doi.org/10.1073/pnas.0501747102
[9]  Oliveira, S.C. and Figueroa-Villar, J.D. (2002) 1H NMR Spectroscopy Study of the Interaction between Pyrimethamine Hydrochloride and Bovine Serum Albumin. Journal of Magnetic Resonance, 1, 28-31.
[10]  Saleh, B.A., Abood, H.A., Miyamoto, R. and Bortoluzzi, M. (2011) Theoretical Study of Substituent Effects on Electronic and Structural Properties of 2,4-Diamino-5-para-substituted-phenyl-6-ethyl-pyrimidines. Journal of the Iranian Chemical Society, 8, 653-661.
https://doi.org/10.1007/BF03245897
[11]  Sethuraman, V., Stanley, N., Muthiah, P.T., et al. (2003) Isomorphism and Crystal Engineering: Organic Ionic Ladders Formed by Supramolecular Motifs in Pyrimethamine Salts. Crystal Growth & Design, 3, 823-828.
https://doi.org/10.1021/cg030015j
[12]  Stanley, N., Sethuraman, V., Muthiah, P.T., et al. (2002) Crystal Engineering of Organic Salts: Hydrogen-Bonded Supramolecular Motifs in Pyrimethamine Hydrogen Glutarate and Pyrimethamine Formate. Crystal Growth & Design, 2, 631-635.
https://doi.org/10.1021/cg020027p
[13]  Hemamalini, M., Muthiah, P.T., Sridhar, B. and Rajaram, R.K. (2005) Pyrimethamine Sulfosalicylate Monohydrate. Acta Crystallographica Section E, 61, o1480-o1482.
https://doi.org/10.1107/S1600536805012237
[14]  Tutughamiarsoa, M. and Bolteb, M. (2011) A New Polymorph and Two Pseudo-Polymorphs of Pyrimethamine. Acta Crystallographica Section C, 67, o428-o434.
https://doi.org/10.1107/S0108270111038868
[15]  Hirao, H., Thellamurege, N. and Zhang, X. (2014) Applications of Density Functional Theory to Iron-Containing Molecules of Bioinorganic Interest. Frontiers in Chemistry, 2, Article No. 14.
https://doi.org/10.3389/fchem.2014.00014
[16]  Mourik, T., Bühl, M. and Gaigeot, M.P. (2014) Density Functional Theory across Chemistry, Physics and Biology. Philosophical Transactions of the Royal Society A, 372, Article ID: 20120488.
https://doi.org/10.1098/rsta.2012.0488
[17]  Ravikumar, C., Joe, I.H. and Jayakumar, V.S. (2008) Charge Transfer Interactions and Nonlinear Optical Properties of Push-Pull Chromophore Benzaldehyde Phenylhydrazone: A Vibrational Approach. Chemical Physics Letters, 460, 552-558.
https://doi.org/10.1016/j.cplett.2008.06.047
[18]  Sun, Y.X., Hao, Q.L., Lu, L.D., et al. (2010) Vibrational Spectroscopic Study of o-, m- and p-hydroxybenzylideneaminoantipyrines. Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy, 75, 203-211.
https://doi.org/10.1016/j.saa.2009.10.013
[19]  Zalaoglu, Y., Karaboga, F., Yildirim, G., et al. (2011) Ab Initio Hartree-Fockand Density Functional Theory Study on Characterization of 2-nitro-n-(4-nitrophenyl) Benzamide. BPL, 19, 137-152.
[20]  Sethuraman, V. and Muthiah, P.T. (2002) Hydrogen-Bonded Supramolecular Ribbons in the Antifolate Drug Pyrimethamine. Acta Crystallographica Section E, 58, o817-o818.
https://doi.org/10.1107/S1600536802011133
[21]  Sethuraman, V. and Muthiah, P.T. (2002) CCDC 193733: Experimental Crystal Structure Determination.
https://www.ccdc.cam.ac.uk/structures/Search?Ccdcid=193733&DatabaseToSearch=Published
[22]  Becke, A.D. (1993) Density Functional Thermochemistry. III. The Role of Exact Exchange. The Journal of Chemical Physics, 98, 5648-5652.
https://doi.org/10.1063/1.464913
[23]  Stephens, P.J., Devlin, F.J., Chabalowski, C.F. and Frisch, M.J. (1994) Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. The Journal of Physical Chemistry, 98, 11623-11627.
https://doi.org/10.1021/j100096a001
[24]  Yu, H.S., He, X., Li, S.L. and Truhlar, D.G. (2016) MN15: A Kohn-Sham Global-Hybrid Exchange-Correlation Density Functional with Broad Accuracy for Multi-Reference and Single-Reference Systems and Noncovalent Interactions. Chemical Science, 7, 5032-5051.
https://doi.org/10.1039/C6SC00705H
[25]  Weigend, F. (2006) Accurate Coulomb-Fitting Basis Sets for H to Rn. Physical Chemistry Chemical Physics, 8, 1057-1065.
https://doi.org/10.1039/b515623h
[26]  Chai, J.D. and Gordon, M.H. (2008) Long-Range Corrected Hybrid Density Functionals with Damped Atom-Atom Dispersion Corrections. Physical Chemistry Chemical Physics, 10, 6615-6620.
https://doi.org/10.1039/b810189b
[27]  Song, J.W., Hirosawa, T., Tsuneda, T. and Hirao, K. (2009) An Improved Long-Range Corrected Hybrid Exchange-Correlation Functional Including a Short-Range Gaussian Attenuation (LCgau-BOP). The Journal of Chemical Physics, 131, Article ID: 059901.
https://doi.org/10.1063/1.3202436
[28]  Tawada, Y., Tsuneda, T., Yanagisawa, S., et al. (2004) A Long-Range-Corrected Time-Dependent Density Functional Theory. The Journal of Chemical Physics, 120, 8425.
https://doi.org/10.1063/1.1688752
[29]  Chai, J. and Head-Gordon, M. (2008) Systematic Optimization of Long-Range Corrected Hybrid Density Functionals. The Journal of Chemical Physics, 128, Article ID: 084106.
https://doi.org/10.1063/1.2834918
[30]  Frisch, M.J., Trucks, G.W., Schlegel, H.B., et al. (2016) Gaussian 16, Revision B.01. Gaussian, Inc., Wallingford.
[31]  Dennington, R., Keith, T. and Millam, J. (2009) Gauss View, Version 5. Semichem Inc., Shawnee Mission.
[32]  O’Boyle, N.M., Tenderholt, A.L. and Langner, K.M. (2008) High Capacity Hydrogen Storage in Ni Decorated Carbon Nanocone: A First-Principles Study. Journal of Computational Chemistry, 29, 839-845.
[33]  Chamundeeswari, S.P.V., Jebaseelan, E.R.J. and Sundaraganesan, N. (2011) Theoretical and Experimental Studies on 2-(2-methyl-5-nitro-1-imidazolyl) Ethanol. European Journal of Chemistry, 2, 136-145.
https://doi.org/10.5155/eurjchem.2.2.136-145.169
[34]  NIST (National Institute of Standards and Technology) (2020) Computational Chemistry Comparison and Benchmark Database. NIST Standard Reference Database Number 101 Release 21.
[35]  Malloum, A., Fifen, J.J., Dhaouadi, Z., et al. (2015) Structures and Relative Stabilities of Ammonia Clusters at Different Temperatures: DFT vs. Ab-Initio. Physical Chemistry Chemical Physics, 17, 29226-29242.
https://doi.org/10.1039/C5CP03374H
[36]  Jamroz, M.H. (2013) Vibrational Energy Distribution Analysis (VEDA): Scopes and Limitations. Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy, 114, 220-230.
https://doi.org/10.1016/j.saa.2013.05.096
[37]  Krzysztof, W., James, F.H. and Pulay, P.J. (1990) Efficient Implementation of the Gauge-Independent Atomic Orbital Method for NMR Chemical Shift Calculations. Journal of the American Chemical Society, 112, 8251-8260.
https://doi.org/10.1021/ja00179a005
[38]  Jian, F.F., Zhao, P.S., Bai, Z.S. and Zhang, L. (2005) Quantum Chemical Calculation Studies on 4-phenyl-1-(propan-2-ylidene) Thiosemicarbazide. Structural Chemistry, 16, 635-639.
https://doi.org/10.1007/s11224-005-8254-z
[39]  Dabbagh, H.A., Zamani, M., Farrokhpour, H., et al. (2010) Conformational Analysis and Intramolecular/Intermolecular Interactions of N,N’-dibenzylideneethylenediamine Derivatives. Journal of Molecular Structure, 983, 169-185.
https://doi.org/10.1016/j.molstruc.2010.08.048
[40]  Stuart, B.H. (2004) Infrared Spectroscopy: Fundamentals and Applications. Vol. 1-244, Wiley & Sons Ltd., Chichester.
https://doi.org/10.1002/0470011149
[41]  Karrouchi, K., Brandán, S.A., Sert, Y., et al. (2020) Synthesis, X-Ray Structure, Vibrational Spectroscopy, DFT Investigation, Biological Evaluation and Molecular Docking of (E)-N’-(4-(dimethylamino)benzylidene)-5-methyl-1H-pyrazole-3-carbohydrazide. Journal of Molecular Structure, 1219, Article ID: 128541.
https://doi.org/10.1016/j.molstruc.2020.128541
[42]  Onyeji, C.O., Omoruyi, S.I., Oladimeji, F.A. and Soyinka, J.O. (2009) Physicochemical Characterization and Dissolution Properties of Binary Systems of Pyrimethamine and 2-Hydroxypropyl-β-cyclodextrin. African Journal of Biotechnology, 8, 1651-1659.
[43]  Lin-Vien, D., Colthup, N.B., Fateley, W. and Grasselli, J. (1991) The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules. Elsevier, Amsterdam, 277-306.
https://doi.org/10.1016/B978-0-08-057116-4.50023-7
[44]  Sajan, D., Binoy, J., Pradeep, B., et al. (2004) NIR-FT Raman and Infrared Spectra and Ab Initio Computations of Glycinium Oxalate. Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy, 60, 173-180.
https://doi.org/10.1016/S1386-1425(03)00193-8
[45]  Roeges, N.P.G. (1994) A Guide to the Complete Interpretation of Infrared Spectra of Organic Structures. Vol. 1-360, Wiley and Sons Inc., New York.
[46]  Socrates, G. (1980) Infrared Characteristic, Infrared Characteristic Group Frequencies. Vol. 1-174, Wiley & Sons, Chichester.
https://doi.org/10.1016/0022-2860(81)85280-5
[47]  Al-Omary, F.A.M., Raj, A. and Raju, K. (2015) Spectroscopic Investigation (FT-IR, FT-Raman), HOMO-LUMO, NBO Analysis and Molecular Docking Study of 2-[(4-chlorobenzyl)sulfanyl]-4-(2-methylpropyl)-6-[3-trifluoromethyl)-anilino]pyrimidine-5-carbonitrile, a Potential Chemotherapeutic Agent. Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy, 136, 520-533.
https://doi.org/10.1016/j.saa.2014.09.066
[48]  Yadav, L.D.S. (2013) Organic Spectroscopy. Vol. 1-334, 2004th Edition, Springer, Berlin.
[49]  Kurt, M., Yurdakul, M. and Yurdakul, S. (2004) Molecular Structure and Vibrational Spectra of 3-Chloro-4-methyl Aniline by Density Functional Theory and Ab Initio Hartree-Fock Calculations. Journal of Molecular Structure, THEOCHEM, 711, 25-32.
https://doi.org/10.1016/j.theochem.2004.07.034
[50]  Romano, E., Davies, L. and Antonia Brandán, S. (2017) Structural Properties and FTIR-Raman Spectra of the Anti-Hypertensive, Clonidine Hydrochloride Agent and Their Dimeric Species. Journal of Molecular Structure, 1133, 226-235.
https://doi.org/10.1016/j.molstruc.2016.12.008
[51]  Anderson, R.J., Bendell, D.J. and Groundwater, P.W. (2004) Organic Spectroscopic Analysis. Journal of Natural Products, 67, 2158.
[52]  Fleming, I. (1976) Frontier Orbitals and Organic Chemical Reactions. Vol. 1-249, Wiley, London.
[53]  Mathammal, R., Jayamani, N. and Geetha, N. (2013) Molecular Structure, NMR, HOMO, LUMO, and Vibrational Analysis of O-Anisic Acid and Anisic Acid Based on DFT Calculations. Journal of Spectroscopy, 2013, Article ID: 171735.
https://doi.org/10.1155/2013/171735
[54]  Kosar, B. and Albayrak, C. (2011) Spectroscopic Investigations and Quantum Chemical Computational Study of (E)-4-methoxy-2-[(p-tolylimino)methyl]phenol. Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy, 78, 160-167.
https://doi.org/10.1016/j.saa.2010.09.016
[55]  Obi-Egbedi, N.O., Obot, I.B. and El-Khaiary, M.I. (2011) Quantum Chemical Investigation and Statistical Analysis of the Relationship between Corrosion Inhibition Efficiency and Molecular Structure of Xanthene and Its Derivatives on Mild Steel in Sulphuric Acid. Journal of Molecular Structure, 1002, 86-96.
https://doi.org/10.1016/j.molstruc.2011.07.003
[56]  Gunasekaran, S., Kumaresan, S., Arunbalaji, R., et al. (2008) Density Functional Theory Study of Vibrational Spectra, and Assignment of Fundamental Modes of Dacarbazine. Journal of Chemical Sciences, 120, 315-324.
https://doi.org/10.1007/s12039-008-0054-8
[57]  Murray, J.S. and Sen, K. (1996) Molecular Electrostatic Potentials: Concepts and Applications. In: Theoretical and Computational Chemistry, Vol. 3, Elsevier Science, Amsterdam, 1-665.
[58]  Erfu, H., Siyamak, S., Sultan, A.S., et al. (2021) Quantum Chemical Modeling, Synthesis, Spectroscopic (FT-IR, Excited States, UV-Vis) Studies, FMO, QTAIM, NBO and NLO Analyses of Two New Azo Derivatives. Journal of Molecular Structure, 1243, Article ID: 130810.
https://doi.org/10.1016/j.molstruc.2021.130810
[59]  Cox, S.R. and Williams, D.E. (1981) Representation of the Molecular Electrostatic Potential by a Net Atomic Charge Model. Journal of Computational Chemistry, 2, 304-323.
https://doi.org/10.1002/jcc.540020312
[60]  Carbó, R. and Calabuig, B. (1989) Molsimil-88: Molecular Similarity Calculations Using a CNDO-Like Approximation. Computer Physics Communications, 55, 117-126.
https://doi.org/10.1016/0010-4655(89)90070-2
[61]  Musa, K.A., Ning, T., Mohamad, S.B. and Tayyab, S. (2020) Intermolecular Recognition between Pyrimethamine, an Antimalarial Drug and Human Serum Albumin: Spectroscopic and Docking Study. Journal of Molecular Liquids, 311, Article ID: 113270.
https://doi.org/10.1016/j.molliq.2020.113270

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133