全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Modeling of Heat Transfers in Bioreactive Household Waste Storage Facilities: Spatial and Temporal Distributions

DOI: 10.4236/jsbs.2022.123004, PP. 37-56

Keywords: Household Waste, Biogas, Temperature, Heat and Mass Transfer, Mathematical Model

Full-Text   Cite this paper   Add to My Lib

Abstract:

In order to enhance the production of biogas and to study the thermal behavior of waste, a numerical study of fluid flows and heat transfers within household waste was developed to predict the distributions of thermal fields. The mathematical model is based on the conservation of mass and energy equations. The resulting system of equations is discretized using the finite volume method and solved using the Thomas algorithm. The results of the model studied are compared with the numerical and site measurements results from other authors. The results have been found to be in good agreement. The results show that the mathematical model is able to reproduce the thermal behavior in anaerobic phase in landfills. The isotherms revealed that temperatures are lower in the upper part of the waste cell, very high in the core and decrease slightly in the bottom of the cell due to the biodegradation of waste.

References

[1]  Sbaa, M., Chergui, H., Melhaoui, M. and Bouali, A. (2001) Uptake and Distribution of Heavy Metals in Agricultural Production Irrigated by Raw Wastewater. Revue Marocaine des Sciences Agronomiques et Vétérinaires, 21, 45-52.
[2]  Farquhar, G.J. and Rovers, F.A. (1973) Gas Production during Refuse Decomposition. Water, Air, and Soil Pollution, 2, 483-495.
https://doi.org/10.1007/BF00585092
[3]  Gurijala, K.R. and Suflita, J.M. (1993) Environmental Factors Influencing Methanogenesis from Refuse in Landfill Samples. Environmental Science & Technology, 27, 1176-1181.
https://doi.org/10.1021/es00043a018
[4]  Rees, J.F. (1980) Optimisation of Methane Production and Refuse Decomposition in Landfills by Temperature Control. Journal of Chemical Technology and Biotechnology, 30, 458-465.
https://doi.org/10.1002/jctb.503300158
[5]  Klink, R.E. and Ham, R.K. (1982) Effects of Moisture Movement on Methane Production in Solid Waste Landfill Samples. Resources and Conservation, 8, 29-41.
https://doi.org/10.1016/0166-3097(82)90051-7
[6]  Vavilin, V.A., Rytov, S.V., Lokshina, L.Y., Pavlostathis, S.G. and Barlaz, M.A. (2003) Distributed Model of Solid Waste Anaerobic Digestion: Effects of Leachate Recirculation and pH Adjustment. Biotechnology and Bioengineering, 81, 66-73.
https://doi.org/10.1002/bit.10450
[7]  El-Fadel, M., Findikakis, A.N. and Leckie, J.O. (1996) Numerical Modelling of Generation and Transport of Gas and Heat in Landfills I. Model Formulation. Waste Management & Research, 14, 483-504.
https://doi.org/10.1177/0734242X9601400506
[8]  Chenu, D. (2007) Modelling Reactive Heat and Mass Transport within Landfills: Application to Bioreactor Landfill. PhD Thesis, Institut National Polytechnique de Toulouse, Toulouse. (In French)
[9]  Durmusoglu, E., Corapcioglu, M.Y. and Tuncay, K. (2005) Landfill Settlement with Decomposition and Gas Generation. Journal of Environmental Engineering, 131, 1311-1321.
https://doi.org/10.1061/(ASCE)0733-9372(2005)131:9(1311)
[10]  Nocko, L.M., McCartney, J.S., Gupta, R., Botelho, K. and Morris, J. (2018) Heat Extraction from Municipal Solid Waste Landfills. Proceedings, 43rd Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, 12-14 February 2018, SGP-TR-213.
[11]  Döll, P. (1997) Desiccation of Mineral Liners Below Landfills with Heat Generation. Journal of Geotechnical and Geoenvironmental Engineering, 123, 1001-1009.
https://doi.org/10.1061/(ASCE)1090-0241(1997)123:11(1001)
[12]  Yoshida, H. and Rowe, R.K. (2003) Consideration of Landfill Liner Temperature. Proceedings Sardinia 2003, 9th International Waste Management and Landfill Symposium S. Margherita di Pula, Cagliari, 6-10 October 2003.
[13]  Koerner, G.R. and Koerner, R.M. (2006) Long-Term Temperature Monitoring of Geomembranes at Dry and Wet Landfills. Geotextiles and Geomembranes, 24, 72-77.
https://doi.org/10.1016/j.geotexmem.2004.11.003
[14]  Hanson, J.L., Yeşiller, N. and Oettle, N.K. (2010) Spatial and Temporal Temperature Distributions in Municipal Solid Waste Landfills. Journal of Environmental Engineering, 136, 804-814.
https://doi.org/10.1061/(ASCE)EE.1943-7870.0000202
[15]  Hanson, J.L., Eşiller, N.Y, Onnen, M.T., Liu, W.L., Oettle, N.K. and Marinos, J.A. (2013) Development of Numerical Model for Predicting Heat Generation and Temperatures in MSW Landfills. Waste Management, 33, 1993-2000.
https://doi.org/10.1016/j.wasman.2013.04.003
[16]  Lefebvre, X., Lanini, S. and Houi, D. (2000) The Role of Aerobic Activity on Refuse Temperature Rise, I. Landfill Experimental Study. Waste Management & Research, 18, 444-452.
https://doi.org/10.1177/0734242X0001800505
[17]  El-Fadel, M., Findikakis, A.N. and Leckie, J.O. (1996) Numerical Modelling of Generation and Transport of Gas and Heat in Sanitary Landfills II. Model Application. Waste Management & Research, 14, 537-551.
https://doi.org/10.1177/0734242X9601400603
[18]  Findikakis, A.N., Papelis, C., Halvadakis, C.P. and Leckie, J.O. (1988) Modelling Gas Production in Managed Sanitary Landfills. Waste Management & Research, 6, 115-123.
https://doi.org/10.1177/0734242X8800600121
[19]  Gholamifard, S. (2009) Modelling of Bioactive Two-Phase Flows in Waste Storage Facilities. PhD Thesis, Université Paris-Est, Paris. (In French)
[20]  Aran, C. (2001) Modelling of Fluid Flows and Heat Transfer in Household in Household Waste. Application to the Reinjection of Leachate into a Landfill Storage Facility. PhD Thesis, Institut National Polytechnique de Toulouse, Toulouse. (In French)
[21]  Korfiatis, G.P., Demetracopoulos, A.C., Bourodimos, E.L. and Nawy, E.G. (1984) Moisture Transport in a Solid Waste Column. Journal of Environmental Engineering, 110, 780-796.
https://doi.org/10.1061/(ASCE)0733-9372(1984)110:4(780)
[22]  Beaven, R.P. (1995) Determination of Hydrogeological and Geotechnical Properties of Refuse Using a Large Compression Cell. 745-760.
[23]  Lanini, S. (1998) Analyse et modélisation des transferts de masse et de chaleur au sein des décharges d’ordures ménagères. PhD Thesis, Institut National Polytechnique de Toulouse, Toulouse. (In French)
[24]  Zornberg, J.G., Jernigan, B.L., Sanglerat, T.R. and Cooley, B.H. (1999) Retention of Free Liquids in Landfills Undergoing Vertical Expansion. Journal of Geotechnical and Geoenvironmental Engineering, 125, 583-594.
https://doi.org/10.1061/(ASCE)1090-0241(1999)125:7(583)
[25]  El-Fadel, M. and Khoury, R. (2000) Modeling Settlement in MSW Landfills: A Critical Review. Critical Reviews in Environmental Science and Technology, 30, 327-361.
https://doi.org/10.1080/10643380091184200
[26]  McCreanor, P.T. and Reinhart, D.R. (2000) Mathematical Modeling of Leachate Routing in a Leachate Recirculating Landfill. Water Research, 34, 1285-1295.
https://doi.org/10.1016/S0043-1354(99)00243-2
[27]  Hudson, A.P., Beaven, R.P. and Powrie, W. (2001) Interaction of Water and Gas in Saturated Household Waste in Large Scale Compression Cell. Sardinia 2001, 8th International Waste Management and Landfill Symposium, Sardinia, 1-5 October 2001, 585-594.
[28]  Olivier, F. (2003) Tassement des déchets en CSD de classe II: Du site au modèle. PhD Thesis, Université Joseph-Fourier-Grenoble I, Grenoble.
[29]  Kindlein, J., Dinkler, D. and Ahrens, H. (2006) Numerical Modelling of Multiphase Flow and Transport Processes in Landfills. Waste Management & Research, 24, 376-387.
https://doi.org/10.1177/0734242X06065506
[30]  Beaven, R.P., Hudson, A.P., Knox, K., Powrie, W. and Robinson, J.P. (2013) Clogging of Landfill Tyre and Aggregate Drainage Layers by Methanogenic Leachate and Implications for Practice. Waste Management, 33, 431-444.
https://doi.org/10.1016/j.wasman.2012.10.021
[31]  Aguilar Juarez, O. (2000) Analysis and Modelling of Aerobic Biological Reactions during the Operational Phase of a Household Waste Landfill. PhD Thesis, INSA, Toulouse.
[32]  Aziz, K. (1979) Petroleum Reservoir Simulation. Applied Science Publishers, London, 135-139.
[33]  Yeşiller, N., Hanson, J.L. and Liu, W.-L. (2005) Heat Generation in Municipal Solid Waste Landfills. Journal of Geotechnical and Geoenvironmental Engineering, 131, 1330-1344.
https://doi.org/10.1061/(ASCE)1090-0241(2005)131:11(1330)
[34]  Nastev, M., Therrien, R., Lefebvre, R. and Gelinas, P. (2001) Gas Production and Migration in Landfills and Geological Materials. Journal of Contaminant Hydrology, 52, 187-211.
https://doi.org/10.1016/S0169-7722(01)00158-9
[35]  Gholamifard, S., Eymard, R. and Duquennoi, C. (2008) Modeling Anaerobic Bioreactor Landfills in Methanogenic Phase: Long Term and Short Term Behaviors. Water Research, 42, 5061-5071.
https://doi.org/10.1016/j.watres.2008.09.040
[36]  Ozkaya, B., Demir, A. and Bilgili, M.S. (2007) Neural Network Prediction Model for the Methane Fraction in Biogas from Field-Scale Landfill Bioreactors. Environmental Modelling & Software, 22, 815-822.
https://doi.org/10.1016/j.envsoft.2006.03.004
[37]  Attal, A., Akunna, J., Camacho, P., Salmon, P. and Paris, I. (1992) Anaerobic Degradation of Municipal Wastes in Landfill. Water Science and Technology, 25, 243-253.
https://doi.org/10.2166/wst.1992.0156
[38]  Townsend, T.G., Miller, W.L., Lee, H.-J. and Earle, J.F.K. (1996) Acceleration of Landfill Stabilization Using Leachate Recycle. Journal of Environmental Engineering, 122, 263-268.
https://doi.org/10.1061/(ASCE)0733-9372(1996)122:4(263)
[39]  Yeşiller, N., Hanson, J.L., Oettle, N.K. and Liu, W.-L. (2008) Thermal Analysis of Cover Systems in Municipal Solid Waste Landfills. Journal of Geotechnical and Geoenvironmental Engineering, 134, 1655-1664.
https://doi.org/10.1061/(ASCE)1090-0241(2008)134:11(1655)
[40]  Rowe, R.K. (1998) Geosynthetics and the Minimization of Contaminant Migration through Barrier Systems beneath Solid Waste. Proceeding, 6th International Conference on Geosynthetics, Vol. 1, 27-102.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413