Catalysts of carbon monoxide oxidation were synthesized by deposition of
platinum on titanium nitride (TiN). Two substrates with an average particle
size of 18 and 36 nm were obtained by hydrogen reduction of titanium
tetrachloride in a stream of microwave plasma of nitrogen. The surface of the
catalysts was studied by X-ray photoelectron spectroscopy (XPS). The data
obtained by us in the present work indicate the presence of oxynitride as a
transition layer between nitride and oxide. It was found that the CO oxidation
rate on the 9 - 15 wt.% Pt loaded TiN catalysts is 120 times higher than that on the
platinum black with a specific surface of 30 m2/g. Increase in the reaction rate of CO oxidation on Pt/TiN catalysts as
compared to platinum black can be associated with both an increase in the
concentration of CO molecules adsorbed and a decrease in the activation energy
of the reaction. Catalysts are promising for use in catalytic air purification
systems.
References
[1]
Sundgren, J.-E., Johansson, B.-O., Karlsson, S.-E. and Hentzell, H.T.G. (1983) Mechanisms of Reactive Sputtering of Titanium Nitride and Titanium Carbide II: Morphology and Structure. Thin Solid Films, 105, 367-384. https://doi.org/10.1016/0040-6090(83)90319-X
[2]
Sproul, W.D., Rudnik, P.J. and Gogol, C.A. (1989) The Effect of Target Power on the Nitrogen Partial Pressure Level and Hardness of Reactively Sputtered Titanium Nitride Coatings. Thin Solid Films, 171, 171-181. https://doi.org/10.1016/0040-6090(89)90042-4
[3]
Cheng, H.-E. and Wen, Y.-W. (2004) Correlation between Process Parameters, Microstructure and Hardness of Titanium Nitride Films by Chemical Vapor Deposition. Surface and Coatings Technology, 179, 103-109. https://doi.org/10.1016/S0257-8972(03)00789-8
[4]
Zega, B., Kornmann, M. and Amiguet, J. (1977) Hard Decorative TiN Coatings by Ion Plating. Thin Solid Films, 45, 577-582. https://doi.org/10.1016/0040-6090(77)90249-8
[5]
Buhl, R., Pulker, H.K. and Moll, E. (1981) TiN Coatings on Steel. Thin Solid Films, 80, 265-270. https://doi.org/10.1016/0040-6090(81)90233-9
[6]
Mumtaz, W.H. (1982) Class, Color of Titanium Nitride Prepared by Reactive dc Magnetron Sputtering. Journal of Vacuum Science and Technology, 20, 345-348. https://doi.org/10.1116/1.571461
[7]
Niyomsoan, S., Grant, W., Olson, D.L. and Mishra, B. (2002) Variation of Color in Titanium and Zirconium Nitride Decorative Thin Films. Thin Solid Films, 415, 187-194. https://doi.org/10.1016/S0040-6090(02)00530-8
[8]
Youn, D.H., Bae, G., Han, S., Kim, J.Y., Jang, J.-W., Park, H., Choi, S.H. and Lee, J.S. (2013) A Highly Efficient Transition Metal Nitride-Based Electrocatalyst for Oxygen Reduction Reaction: TiN on a CNT-Graphene Hybrid Support. Journal of Materials Chemistry A. Materials for Energy and Sustainability, 1, 8007-8015. https://doi.org/10.1039/c3ta11135k
[9]
Nan, H., Dang, D. and Tian, X.L. (2018) Structural Engineering of Robust Titanium Nitride as Effective Platinum Support for the Oxygen Reduction Reaction. Journal of Materials Chemistry A. Materials for Energy and Sustainability, 6, 6065-6073. https://doi.org/10.1039/C8TA00326B
[10]
Pan, Z., Xiao, Y., Fu, Z., Zhan, G., Wu, S., Xiao, C., Hu, G. and Wei, Z. (2014) Hollow and Porous Titanium Nitride Nanotubes as High-Performance Catalyst Supports for Oxygen Reduction Reaction. Journal of Materials Chemistry A. Materials for Energy and Sustainability, 2, 13966-13975. https://doi.org/10.1039/C4TA02402H
[11]
Dong, Y., Wu, Y., Liu, M. and Li, J. (2013) Electrocatalysis on Shape-Controlled Titanium Nitride Nanocrystals for the Oxygen Reduction Reaction. ChemSusChem, 6, 2016-2021. https://doi.org/10.1002/cssc.201300331
[12]
Liu, M., Dong, Y., Wu, Y., Feng, H. and Li, J. (2013) Titanium Nitride Nanocrystals on Nitrogen-Doped Graphene as an Efficient Electrocatalyst for Oxygen Reduction Reaction. Chemistry—A European Journal, 19, 14781-14786. https://doi.org/10.1002/chem.201302425
[13]
Shin, H., Kim, H.-I., Chung, D.Y., Yoo, J.M., Weon, S., Choi, W. and Sung, Y.-E. (2016) Scaffold-Like Titanium Nitride Nanotubes with a Highly Conductive Porous Architecture as a Nanoparticle Catalyst Support for Oxygen Reduction. ACS Catalysis, 6, 3914-3920. https://doi.org/10.1021/acscatal.6b00384
[14]
Yang, S., Chung, D.Y., Tak, Y.-J., Kim, J., Han, H., Yu, J.-S., Soon, A., Sung, Y.-E. and Lee, H. (2015) Electronic Structure Modification of Platinum on Titanium Nitride Resulting in Enhanced Catalytic Activity and Durability for Oxygen Reduction and Formic Acid Oxidation. Applied Catalysis B, 174-175, 35-42. https://doi.org/10.1016/j.apcatb.2015.02.033
[15]
Zhang, J., Ma, L., Gan, M., Fu, S. and Zhao, Y. (2016) TiN@ Nitrogen-Doped Carbon Supported Pt Nanoparticles as High-Performance Anode Catalyst for Methanol Electrooxidation. Journal of Power Sources, 324, 199-207. https://doi.org/10.1016/j.jpowsour.2016.05.083
[16]
Lee, J.-M., Han, S.-B., Song, Y.-J., Kim, J.-Y., Roh, B., Hwang, I., Choi, W. and Park, K.-W. (2010) Methanol Electrooxidation of Pt Catalyst on Titanium Nitride Nanostructured Support. Applied Catalysis A: General, 375, 149-155. https://doi.org/10.1016/j.apcata.2009.12.037
[17]
Yang, M., Cui, Z. and DiSalvo, F.J. (2013) Mesoporous Titanium Nitride Supported Pt Nanoparticles as High Performance Catalysts for Methanol Electrooxidation. Physical Chemistry Chemical Physics, 15, 1088-1092. https://doi.org/10.1039/C2CP44215A
[18]
Thotiyl, M.M.O. and Sampath, S. (2011) Electrochemical Oxidation of Ethanol in Acid Media on Titanium Nitride Supported Fuel Cell Catalysts. Electrochimica Acta, 56, 3549-3554. https://doi.org/10.1016/j.electacta.2010.12.091
[19]
Xiao, Y., Fu, Z., Zhan, G., Pan, Z., Xiao, C., Wu, S., Chen, C., Hu, G. and Wei, Z. (2015) Increasing Pt Methanol Oxidation Reaction Activity and Durability with a Titanium Molybdenum Nitride Catalyst Support. Journal of Power Sources, 273, 33-40. https://doi.org/10.1016/j.jpowsour.2014.09.057
[20]
OttakamThotiyl, M.M., Ravikumar, T. and Sampath, S. (2010) Platinum Particles Supported on Titanium Nitride: An Efficient Electrode Material for the Oxidation of Methanol in Alkaline Media. Journal of Materials Chemistry, 20, 10643-10651. https://doi.org/10.1039/c0jm01600d
[21]
Centeno, M.á., Carrizosa, I. and Odriozola, J.A. (2003) Deposition-Precipitation Method to Obtain Supported Gold Catalysts: Dependence of the Acid-Base Properties of the Support Exemplified in the System TiO2-TiOxNy-TiN. Applied Catalysis A: General, 246, 365-372. https://doi.org/10.1016/S0926-860X(03)00058-9 https://www.sciencedirect.com/science/article/pii/S0926860X03000589
[22]
Heiz, U., Sanchez, A., Abbet, S. and Schneider, W.-D. (1999) Catalytic Oxidation of Carbon Monoxide on Monodispersed Platinum Clusters: Each Atom Counts. Journal of the American Chemical Society, 121, 3214-3217. https://doi.org/10.1021/ja983616l
[23]
Lopez, N. and Nørskov, J.K. (2002) Catalytic CO Oxidation by a Gold Nanoparticle: A Density Functional Study. Journal of the American Chemical Society, 124, 11262-11263. https://www.ncbi.nlm.nih.gov/pubmed/12236728 https://doi.org/10.1021/ja026998a
[24]
Min, B.K. and Friend, C.M. (2007) Heterogeneous Gold-Based Catalysis for Green Chemistry: Low-Temperature CO Oxidation and Propene Oxidation. Chemical Reviews, 107, 2709-2724. https://doi.org/10.1021/cr050954d
[25]
Di, L., Xu, W., Zhan, Z. and Zhang, X. (2015) Synthesis of Alumina Supported Pd-Cu Alloy Nanoparticles for CO Oxidation via a Fast and Facile Method. RSC Advances, 5, 71854-71858. https://doi.org/10.1039/C5RA13813B
[26]
Akita, T., Maeda, Y. and Kohyama, M. (2015) Low-Temperature CO Oxidation Properties and TEM/STEM Observation of Au/γ-Fe2O3 Catalysts. Journal of Catalysis, 324, 127-132. https://doi.org/10.1016/j.jcat.2015.02.006
[27]
He, J., Chen, D., Li, N., Xu, Q., Li, H., He, J. and Lu, J. (2019) Hollow Mesoporous Co3O4-CeO2 Composite Nanotubes with Open Ends for Efficient Catalytic CO Oxidation. ChemSusChem, 12, 1084-1090. https://doi.org/10.1002/cssc.201802501
[28]
Wang, Y., Yang, D., Li, S., Zhang, L., Zheng, G. and Guo, L. (2019) Layered Copper Manganese Oxide for the Efficient Catalytic CO and VOCs Oxidation. Chemical Engineering Journal, 357, 258-268. https://doi.org/10.1016/j.cej.2018.09.156
[29]
Taira, K. and Einaga, H. (2019) The Effect of SO2 and H2O on the Interaction between Pt and TiO2 (P-25) during Catalytic CO Oxidation. Catalysis Letters, 149, 965-973. https://doi.org/10.1007/s10562-019-02672-3
[30]
Bikaljevic, D., Rameshan, R., Köpfle, N., Götsch, T., Mühlegger, E., Schlögl, R., Penner, S., Memmel, N. and Klötzer, B. (2019) Structural and Kinetic Aspects of CO Oxidation on ZnOx-Modified Cu Surfaces. Applied Catalysis A: General, 572, 151-157. https://doi.org/10.1016/j.apcata.2018.12.032
[31]
Haruta, M., Yamada, N., Kobayashi, T. and Iijima, S. (1989) Gold Catalysts Prepared by Coprecipitation for Low-Temperature Oxidation of Hydrogen and of Carbon Monoxide. Journal of Catalysis, 115, 301-309. https://doi.org/10.1016/0021-9517(89)90034-1
[32]
Troitsky, V.N., Gurov, S.V. and Berestenko, V.I. (1979) Peculiarities of Production of Highly Dispersed Powders of Nitrides of IV Group Metals by Reduction of Chloride in Low Temperature Plasma. High Energy Chemistry, 13, 267-272.
[33]
Balikhin, I.L., Berestenko, V.I., Domashnev, I.A., Kurkin, E.N. and Troitskij, V.N. (2005) Patent: Installation and Method for Production of Nanodispersed Powders in Microwave Plasma. No. 2252817. https://yandex.ru/patents/doc/RU2252817C1_20050527
[34]
Vershinin, N.N., Bakaev, V.A., Berestenko, V.I., Efimov, O.N., Kurkin, E.N. and Kabachkov, E.N. (2017) Synthesis and Properties of a Platinum Catalyst Supported on Plasma Chemical Silicon Carbide. High Energy Chemistry, 51, 46-50. https://doi.org/10.1134/S0018143916060199
[35]
Shulga, Y.M., Troitskii, V.N., Aivazov, M.I. and Borodko, Y.G. (1976) X-Ray Photo-Electron Spectra of the Mononitrides of Sc, Ti, V and Cr. Zhurnal Neorganicheskoi Khimii, 21, 2621-2624.
[36]
Johansson, L.I., Stefan, P.M., Shek, M.L. and Nørlund Christensen, A. (1980) Valence-Band Structure of TiC and TiN. Physical Review B, 22, 1032-1037. https://doi.org/10.1103/PhysRevB.22.1032
[37]
Porte, L., Roux, L. and Hanus, J. (1983) Vacancy Effects in the X-Ray Photoelectron Spectra of TiNx. Physical Review B, 28, 3214-3224. https://doi.org/10.1103/PhysRevB.28.3214
[38]
Bertóti, Mohai, M., Sullivan, J.L. and Saied, S.O. (1995) Surface Characterisation of Plasma-Nitrided Titanium: An XPS Study. Applied Surface Science, 84, 357-371. https://doi.org/10.1016/0169-4332(94)00545-1
[39]
Gall, D., Haasch, R.T., Finnegan, N., Lee, T.-Y., Shin, C.-S., Sammann, E., Greene, J.E. and Petrov, I. (2000) In Situ X-Ray Photoelectron, Ultraviolet Photoelectron, and Auger Electron Spectroscopy Spectra from First-Row Transition-Metal Nitrides: ScN, TiN, VN, and CrN. Surface Science Spectra, 7, 167-168. https://doi.org/10.1116/1.1360984
[40]
Bertóti (2002) Characterization of Nitride Coatings by XPS. Surface and Coatings Technology, 151-152, 194-203. https://doi.org/10.1016/S0257-8972(01)01619-X
[41]
Glaser, Surnev, S., Netzer, F.P., Fateh, N., Fontalvo, G.A. and Mitterer, C. (2007) Oxidation of Vanadium Nitride and Titanium Nitride Coatings. Surface Science, 601, 1153-1159. https://doi.org/10.1016/j.susc.2006.12.010
[42]
Patscheider, Hellgren, N., Haasch, R.T., Petrov, I. and Greene, J.E. (2011) Electronic Structure of the SiNx/TiN Interface: A Model System for Superhard Nanocomposites. Physical Review B, 83, Article ID: 125124. https://doi.org/10.1103/PhysRevB.83.125124
[43]
Pan, C.-J., Tsai, M.-C., Su, W.-N., Rick, J., Akalework, N.G., Agegnehu, A.K., Cheng, S.-Y. and Hwang, B.-J. (2017) Tuning/Exploiting Strong Metal-Support Interaction (SMSI) in Heterogeneous Catalysis. Journal of the Taiwan Institute of Chemical Engineers, 74, 154-186. https://doi.org/10.1016/j.jtice.2017.02.012
[44]
Ackermann, M.D., Pedersen, T.M., Hendriksen, B.L.M., Robach, O., Bobaru, S.C., Popa, I., Quiros, C., Kim, H., Hammer, B., Ferrer, S. and Frenken, J.W.M. (2005) Structure and Reactivity of Surface Oxides on Pt(110) during Catalytic CO Oxidation. Physical Review Letters, 95, Article ID: 255505. https://doi.org/10.1103/PhysRevLett.95.255505
[45]
Feng, Y., Wan, Q., Xiong, H., Zhou, S., Chen, X., Pereira Hernandez, X.I., Wang, Y., Lin, S., Datye, A.K. and Guo, H. (2018) Correlating DFT Calculations with CO Oxidation Reactivity on Ga-Doped Pt/CeO2 Single-Atom Catalysts. The Journal of Physical Chemistry C, 122, 22460-22468. https://doi.org/10.1021/acs.jpcc.8b05815
[46]
Kozonoe, C., Giudici, R. and Schmal, M. (2021) Ruthenium Catalyst Supported on Multi-Walled Carbon Nanotubes for CO Oxidation. Modern Research in Catalysis, 10, 73-91. https://doi.org/10.4236/mrc.2021.103005