全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

固态锂金属电池安全性研究进展
Research Progress on Safety of Solid-State Lithium Metal Batteries

DOI: 10.12677/NAT.2022.123023, PP. 210-224

Keywords: 固态锂金属电池,固态电解质,安全性,锂金属负极
Solid-State Lithium Metal Batteries
, Sol-id-State Electrolytes, Safety, Lithium Metal Anode

Full-Text   Cite this paper   Add to My Lib

Abstract:

目前,固态锂金属电池(SSLMB)是实现高能量密度的下一代储能设备之一,其中,全固态电解质(SSEs)的使用有望彻底解决锂金属负极带来的安全问题。由于以往对SSEs电池的刻板印象,大部分研究主要集中于提高SSLMBs的电化学性能,而忽略了其安全性问题。然而,在实际研究过程中,SSLMBs潜在安全性问题逐渐暴露。本综述总结了几种可能引发电池安全问题的原因,并简要概述了相应解决方案。最后,对今后超高安全性SSLMBs的研究进行了总结和展望。
Nowadays, the solid-state lithium metal battery (SSLMB) has been one of the next-generation energy storage devices that is expected to achieve high energy density. The use of solid-state electrolytes (SSEs) is expected to completely solve the safety problems caused by lithium metal anode. Due to the stereotype of SSEs were always safe in the past, most of the previous studies focused on improving the electrochemical performance of SSLMBs, but ignored the safety issues. However, the potential security problems of SSLMBs are gradually exposed in practical research. This review summarizes several possible causes of battery safety problems and provides a brief overview of corresponding solutions. Finally, the perspectives on ultra-high safety SSLMBs are also summarized and prospected.

References

[1]  Han, X., Lu, L., Zheng, Y., et al. (2019) A Review on the Key Issues of the Lithium Ion Battery Degradation among the Whole Life Cycle. eTransportation, 1, Article ID: 100005.
https://doi.org/10.1016/j.etran.2019.100005
[2]  Goodenough, J.B. and Kim, Y. (2009) Challenges for Rechargea-ble Li Batteries. Chemistry of Materials, 22, 587-603.
https://doi.org/10.1021/cm901452z
[3]  Cha, E., Patel, M.D., Park, J., et al. (2018) 2D MoS2 as an Efficient Pro-tective Layer for Lithium Metal Anodes in High-Performance Li-S Batteries. Nature Nanotechnology, 13, 337-344.
https://doi.org/10.1038/s41565-018-0061-y
[4]  Sun, L., Borodin, O., Gao, T., et al. (2015) “Water-in-Salt” Elec-trolyte Enables High-Voltage Aqueous Lithium-Ion Chemistries. Science, 350, 938-943.
https://doi.org/10.1126/science.aab1595
[5]  Liu, K., Liu, W., Qiu, Y., et al. (2017) Electrospun Core-Shell Micro-fiber Separator with Thermal-Triggered Flame-Retardant Properties for Lithium-Ion Batteries. Science Advances, 3, 1-9.
https://doi.org/10.1126/sciadv.1601978
[6]  Chen, S., Zheng, J., Yu, L., et al. (2018) High-Efficiency Lithium Metal Batteries Withfire-Retardant Electrolytes. Joule, 2, 1548-1558.
https://doi.org/10.1016/j.joule.2018.05.002
[7]  Cheng, X.B., Zhang, R., Zhao, C.Z., et al. (2017) Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review. Chemical Reviews, 117, 10403-10473.
https://doi.org/10.1021/acs.chemrev.7b00115
[8]  Lopez, J., Mackanic, D.G., Cui, Y., et al. (2019) Designing Polymers for Advanced Battery Chemistries. Nature Reviews Materials, 4, 312-330.
https://doi.org/10.1038/s41578-019-0103-6
[9]  Manthiram, A., Yu, X. and Wang, S. (2017) Lithium Battery Chemistries Enabled by Solid-State Electrolytes. Nature Reviews Materials, 2, Article No. 16103.
https://doi.org/10.1038/natrevmats.2016.103
[10]  Bachman, J.C., Muy, S., Grimaud, A., et al. (2016) Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction. Chemical Reviews, 116, 140-162.
https://doi.org/10.1021/acs.chemrev.5b00563
[11]  Fan, L., Wei, S., Li, S., et al. (2018) Recent Progress of the Solid-State Electrolytes for High-Energy Metal-Based Batteries. Advanced Energy Materials, 8, Article ID: 1702657.
https://doi.org/10.1002/aenm.201702657
[12]  Aurbach, D., Talyosef, Y., Markovsky, B., et al. (2004) Design of Electrolyte Solutions for Li and Li-Ion Batteries: A Review. Electrochimica Acta, 50, 247-254.
https://doi.org/10.1016/j.electacta.2004.01.090
[13]  Allen, J.L., Wolfenstine, J., Rangasamy, E., et al. (2012) Effect of Substitution (Ta, Al, Ga) on the Conductivity of Li7La3Zr2O12. Journal of Power Sources, 206, 315-319.
https://doi.org/10.1016/j.jpowsour.2012.01.131
[14]  Kamaya, N., Homma, K., Yamakawa, Y., et al. (2011) A Lithium Superionic Conductor. Nature Materials, 10, 682-686.
https://doi.org/10.1038/nmat3066
[15]  Geiger, C.A., Alekseev, E., Lazic, B., et al. (2011) Crystal Chemistry and Stability of “Li7La3Zr2O12” Garnet: A Fast Lithium-Ion Conductor. Inorg Chem, 50, 1089-1097.
https://doi.org/10.1021/ic101914e
[16]  Yoshiyuki, I., Chen, L., Misuru, I., et al. (1993) High Ionic Conductivity in Lithium Lanthanum Titanate. Solid State Communications, 86, 689-693.
https://doi.org/10.1016/0038-1098(93)90841-A
[17]  Chung, H. and Kang, B. (2017) Mechanical and Thermal Failure Induced by Contact between a Li1.5Al0.5Ge1.5(PO4)3 Solid Electrolyte and Li Metal in an All Solid-State Li Cell. Chemistry of Materials, 29, 8611-8619.
https://doi.org/10.1021/acs.chemmater.7b02301
[18]  Santhosha, A.L., Medenbach, L., Buchheim, J.R., et al. (2019) The Indium-Lithium Electrode in Solid-State Lithium-Ion Batteries: Phase Formation, Redox Potentials, and Interface Stability. Batteries & Supercaps, 2, 524-529.
https://doi.org/10.1002/batt.201800149
[19]  Bron, P., Johansson, S., Zick, K., et al. (2013) Li10SnP2S12: An Af-fordable Lithium Superionic Conductor. Journal of the American Chemical Society, 135, 15694-15697.
https://doi.org/10.1021/ja407393y
[20]  Matsuo, M., Nakamori, Y., Orimo, S.-I., et al. (2007) Lithium Superionic Conduction in Lithium Borohydride Accompanied by Structural Transition. Applied Physics Letters, 91, Article ID: 224103.
https://doi.org/10.1063/1.2817934
[21]  Liu, Y., Lee, J.Y. and Hong, L. (2004) In Situ Preparation of Poly(Ethylene Oxide)-SiO2 Composite Polymer Electrolytes. Journal of Power Sources, 129, 303-311.
https://doi.org/10.1016/j.jpowsour.2003.11.026
[22]  Chio, N. and Park, J. (2001) New Polymer Electrolytes Based on PVC/PMMA Blend for Plastic Lithium-Ion Batteries. Electrochim. Acta, 46, 1453-1459.
https://doi.org/10.1016/S0013-4686(00)00739-8
[23]  Chen-Yang, Y., Chen, H., Lin, F., et al. (2002) Polyacrylo-nitrile Electrolytes1. A Novel High-Conductivity Composite Polymer Electrolyte Based on Pan, LiClO4 and A-Al2O3. Solid State Ionics, 150, 327-335.
https://doi.org/10.1016/S0167-2738(02)00457-5
[24]  Zhang, X., Wang, S., Xue, C., et al. (2019) Self-Suppression of Lithium Dendrite in All-Solid-State Lithium Metal Batteries with Poly(vinylidene difluoride)-Based Solid Electrolytes. Advanced Materials, 31, e1806082.
https://doi.org/10.1002/adma.201806082
[25]  Monrpe, C. and Newman, J. (2005) The Impact of Elastic Defor-mation on Deposition Kinetics at Lithium?polymer Interfaces. Journal of the Electrochemical Society, 152, A396-A404.
https://doi.org/10.1149/1.1850854
[26]  Monroe, C. and Newman, J. (2004) The Effect of Interfacial Deformation on Electrodeposition Kinetics. Journal of the Electrochemical Society, 151, A880-A886.
https://doi.org/10.1149/1.1710893
[27]  Porz, L., Swamy, T., Sheldon, B.W., et al. (2017) Mechanism of Lithium Metal Penetration through Inorganic Solid Electrolytes. Advanced Energy Materials, 7, Article ID: 1701003.
https://doi.org/10.1002/aenm.201701003
[28]  Han, F., Westover, A.S., Yue, J., et al. (2019) High Electronic Con-ductivity as the Origin of Lithium Dendrite Formation within Solid Electrolytes. Nature Energy, 4, 187-196.
https://doi.org/10.1038/s41560-018-0312-z
[29]  Mo, F., Ruan, J., Sun, S., et al. (2019) Inside or Outside: Origin of Lithium Dendrite Formation of All Solid-State Electrolytes. Advanced Energy Materials, 9, Article ID: 1902123.
https://doi.org/10.1002/aenm.201902123
[30]  Zhang, H., Li, C., Piszcz, M., et al. (2017) Single Lithium-Ion Con-ducting Solid Polymer Electrolytes: Advances and Perspectives. Chemical Society Reviews, 46, 797-815.
https://doi.org/10.1039/C6CS00491A
[31]  Bannister, D., Davies, G. and Ward, I. (1984) Ionic Conductivities for Poly(ethylene oxide) Complexes with Lithium Salts of Monobasic and Dibasic Acids and Blends of Poly(ethylene oxide) with Lithium Salts of Anionic Polymers. Polymer, 25, 1291-1296.
https://doi.org/10.1016/0032-3861(84)90378-1
[32]  Sun, X.B. and Kerr, J. (2006) Synthesis and Characterization of Network Single Ion Conductors Based on Comb-Branched Polyepoxide Ethers and Lithium Bis(Allylmalonato)Borate. Macromolecules, 39, 362-372.
https://doi.org/10.1021/ma0507701
[33]  Li, Y., Wong, K.W. and Ng, K.M. (2016) Ionic Liquid Decorated Meso-porous Silica Nanoparticles: A New High- Performance Hybrid Electrolyte for Lithium Batteries. Chemical Communica-tions, 52, 4369-4372.
https://doi.org/10.1039/C6CC01236A
[34]  Hu, J., Wang, W., Zhou, B., et al. (2019) Poly(Ethylene Oxide)-Based Composite Polymer Electrolytes Embedding with Ionic Bond Modified Nanoparticles for All-Solid-State Lithium-Ion Battery. Journal of Membrane Science, 575, 200-208.
https://doi.org/10.1016/j.memsci.2019.01.025
[35]  Sun, Y., Zhan, X., Hu, J., et al. (2019) Improving Ionic Conductivity with Bimodal-Sized Li7La3Zr2O12 Fillers for Composite Polymer Electrolytes. ACS Applied Materials & Interfaces, 11, 12467-12475.
https://doi.org/10.1021/acsami.8b21770
[36]  Fu, K.K., Gong, Y., Dai, J., et al. (2016) Flexible, Solid-State, Ion-Conducting Membrane with 3d Garnet Nanofiber Networks for Lithium Batteries. Proceedings of the National Academy of Sciences of the United States of America, 113, 7094-7099.
https://doi.org/10.1073/pnas.1600422113
[37]  Wan, J., Xie, J., Kong, X., et al. (2019) Ultrathin, Flexible, Solid Polymer Composite Electrolyte Enabled with Aligned Nanoporous Host for Lithium Batteries. Nature Nanotechnology, 14, 705-711.
https://doi.org/10.1038/s41565-019-0465-3
[38]  Zeng, X.X., Yin, Y.X., Li, N.W., et al. (2016) Reshaping Lithium Plating/Stripping Behavior via Bifunctional Polymer Electrolyte for Room-Temperature Solid Li Metal Batteries. Journal of the American Chemical Society, 138, 15825-15828.
https://doi.org/10.1021/jacs.6b10088
[39]  Toomas, K., Sloop, S.B., Kerr, J., et al. (2000) Comparison of Lithi-um-Polymer Cell Performance with Unity and Nonunity Transference Numbers. J. Powersources, 89, 132-138.
https://doi.org/10.1016/S0378-7753(00)00420-1
[40]  Doyle, M. and Newman, J. (1995) The Use of Mathematical Modeling in the Design of Lithium/Polymer Battery Systems. Electrochimica Acta, 40, 2191-2196.
https://doi.org/10.1016/0013-4686(95)00162-8
[41]  Brissot, C., Rosso, M., Chazalviel, J., et al. (1999) Dendritic Growth Mechanisms in Lithiumrpolymer Cells. Journal of Power Sources, 81-82, 925-929.
https://doi.org/10.1016/S0378-7753(98)00242-0
[42]  Zhang, H., Oteo, U., Judez, X., et al. (2019) Designer Anion Enabling Solid-State Lithium-Sulfur Batteries. Joule, 3, 1689-1702.
https://doi.org/10.1016/j.joule.2019.05.003
[43]  Porcarelli, L., Shaplov, A.S., Bella, F., et al. (2016) Single-Ion Conducting Polymer Electrolytes for Lithium Metal Polymer Batteries That Operate at Ambient Temperature. ACS Energy Letters, 1, 678-682.
https://doi.org/10.1021/acsenergylett.6b00216
[44]  Yuan, H., Luan, J., Yang, Z., et al. (2020) Single Lithium-Ion Conducting Solid Polymer Electrolyte with Superior Electrochemical Stability and Interfacial Compatibility for Solid-State Lithium Metal Batteries. ACS Applied Materials & Interfaces, 12, 7249-7256.
https://doi.org/10.1021/acsami.9b20436
[45]  Cao, C., Li, Y., Feng, Y., et al. (2019) A Solid-State Single-Ion Pol-ymer Electrolyte with Ultrahigh Ionic Conductivity for Dendrite-Free Lithium Metal Batteries. Energy Storage Materials, 19, 401-407.
https://doi.org/10.1016/j.ensm.2019.03.004
[46]  Ma, Q., Xia, Y., Feng, W., et al. (2016) Impact of the Functional Group in the Polyanion of Single Lithium-Ion Conducting Polymer Electrolytes on the Stability of Lithium Metal Elec-trodes. RSC Advances, 6, 32454-32461.
https://doi.org/10.1039/C6RA01387B
[47]  Ma, Q., Zhang, H., Zhou, C., et al. (2016) Single Lithium-Ion Con-ducting Polymer Electrolytes Based on a Super-Delocalized Polyanion. Angewandte Chemie International Edition, 55, 2521-2525.
https://doi.org/10.1002/anie.201509299
[48]  Fei, Y., Liu, S., Long, Y., et al. (2019) New Single Lithium Ion Con-ducting Polymer Electrolyte Derived from Delocalized Tetrazolate Bonding to Polyurethane. Electrochimica Acta, 299, 902-913.
https://doi.org/10.1016/j.electacta.2019.01.071
[49]  Luo, G., Yuan, B., Guan, T., et al. (2019) Synthesis of Single Lithium-Ion Conducting Polymer Electrolyte Membrane for Solid-State Lithium Metal Batteries. ACS Applied Energy Materials, 2, 3028-3034.
https://doi.org/10.1021/acsaem.9b00440
[50]  Guzman-Gonzalez, G., Avila-Paredes, H.J., Rivera, E., et al. (2018) Electrochemical Characterization of Single Lithium-Ion Conducting Polymer Electrolytes Based on sp3 Boron and Poly(ethylene glycol) Bridges. ACS Applied Materials & Interfaces, 10, 30247-30256.
https://doi.org/10.1021/acsami.8b02519
[51]  Deng, K., Wang, S., Ren, S., et al. (2017) Network Type SP3 Bo-ron-Based Single-Ion Conducting Polymer Electrolytes for Lithium Ion Batteries. Journal of Power Sources, 360, 98-105.
https://doi.org/10.1016/j.jpowsour.2017.06.006
[52]  Shao, Z. and Jannasch, P. (2017) Single Lithium-Ion Con-ducting Poly(Tetrafluorostyrene Sulfonate)-Polyether Block Copolymer Electrolytes. Polymer Chemistry, 8, 785-94.
https://doi.org/10.1039/C6PY01910B
[53]  Liu K-L, Chao C-H, Lee H-C, et al. (2019) A Novel Non-Porous Sep-arator Based on Single-Ion Conducting Triblock Copolymer for Stable Lithium Electrodeposition. Journal of Power Sources, 419, 58-64.
https://doi.org/10.1016/j.jpowsour.2019.02.048
[54]  Deng, K., Qin, J., Wang, S., et al. (2018) Effective Suppres-sion of Lithium Dendrite Growth Using a Flexible Single-Ion Conducting Polymer Electrolyte. Small, 14, e1801420.
https://doi.org/10.1002/smll.201801420
[55]  Deng, K., Wang, S., Ren, S., et al. (2016) A Novel Sin-gle-Ion-Conducting Polymer Electrolyte Derived from CO2-Based Multifunctional Polycarbonate. ACS Applied Materials & Interfaces, 8, 33642-33648.
https://doi.org/10.1021/acsami.6b11384
[56]  Liu, F., Xiao, Q., Wu, H.B., et al. (2018) Fabrication of Hybrid Sili-cate Coatings by a Simple Vapor Deposition Method for Lithium Metal Anodes. Advanced Energy Materials, 8, Article ID: 1701744.
https://doi.org/10.1002/aenm.201701744
[57]  Yang, T., Sun, Y., Qian, T., et al. (2020) Lithium Dendrite Inhibition via 3D Porous Lithium Metal Anode Accompanied by Inherent Sei Layer. Energy Storage Materials, 26, 385-390.
https://doi.org/10.1016/j.ensm.2019.11.009
[58]  Cheng X-B, Zhao C-Z, Yao Y-X, et al. (2019) Recent Advances in Energy Chemistry between Solid-State Electrolyte and Safe Lithium-Metal Anodes. Chem, 5, 74-96.
https://doi.org/10.1016/j.chempr.2018.12.002
[59]  Shen, Y., Zhang, Y., Han, S., et al. (2018) Unlocking the Ener-gy Capabilities of Lithium Metal Electrode with Solid-State Electrolytes. Joule, 2, 1674-1689.
https://doi.org/10.1016/j.joule.2018.06.021
[60]  Oh, D.Y., Nam, Y.J., Park, K.H., et al. (2015) Excellent Compati-bility of Solvate Ionic Liquids with Sulfide Solid Electrolytes: Toward Favorable Ionic Contacts in Bulk-Type All-Solid-State Lithium-Ion Batteries. Advanced Energy Materials, 5, Article ID: 1500865.
https://doi.org/10.1002/aenm.201500865
[61]  Zheng, B., Zhu, J., Wang, H., et al. (2018) Stabilizing Li10SnP2S12/Li Interface via an in Situ Formed Solid Electrolyte Interphase Layer. ACS Applied Materials & Interfaces, 10, 25473-25482.
https://doi.org/10.1021/acsami.8b08860
[62]  Umeshbabu, E., Zheng, B., Zhu, J., et al. (2019) Stable Cycling Lith-ium-Sulfur Solid Battery with Enhanced Li/ Li10GeP2S12 Solid Electrolyte Interface Stability. ACS Applied Materials & Interfaces, 11, 18436-18447.
https://doi.org/10.1021/acsami.9b03726
[63]  Takada, K. (2013) Progress and Prospective of Solid-State Lithium Batteries. Acta Materialia, 61, 759-770.
https://doi.org/10.1016/j.actamat.2012.10.034
[64]  Wan, H., Peng, G., Yao, X., et al. (2016) Cu2ZnSnS4/Graphene Nanocomposites for Ultrafast, Long Life All-Solid-State Lithium Batteries Using Lithium Metal Anode. Energy Storage Materials, 4, 59-65.
https://doi.org/10.1016/j.ensm.2016.02.004
[65]  Chi, S.-S., Liu, Y., Zhao, N., et al. (2019) Solid Polymer Electro-lyte Soft Interface Layer with 3D Lithium Anode for All-Solid-State Lithium Batteries. Energy Storage Materials, 17, 309-316.
https://doi.org/10.1016/j.ensm.2018.07.004
[66]  Nagao, M., Hayashi, A. and Tatsumisago, M. (2012) Bulk-Type Lithium Metal Secondary Battery with Indium Thin Layer at Interface between Li Electrode and Li2S-P2S5 Solid Electrolyte. Electrochemistry, 80, 734-736.
https://doi.org/10.5796/electrochemistry.80.734
[67]  Han, F., Yue, J., Fan, X., et al. (2016) High-Performance All-Solid-State Lithium-Sulfur Battery Enabled by a Mixed-Conductive Li2S Nanocomposite. Nano Letters, 16, 4521-4527.
https://doi.org/10.1021/acs.nanolett.6b01754
[68]  Fu, K.K., Gong, Y., Fu, Z., et al. (2017) Transient Behavior of the Metal Interface in Lithium Metal-Garnet Batteries. Angewandte Chemie International Edition, 56, 14942-14947.
https://doi.org/10.1002/anie.201708637
[69]  Wang, C., Gong, Y., Liu, B., et al. (2017) Conformal, Nanoscale ZnO Surface Modification of Garnet-Based Solid-State Electrolyte for Lithium Metal Anodes. Nano Letters, 17, 565-571.
https://doi.org/10.1021/acs.nanolett.6b04695
[70]  Lu, Y., Huang, X., Ruan, Y., et al. (2018) An in Situ Element Permeation Constructed High Endurance Li-Llzo Interface at High Current Densities. Journal of Materials Chemistry A, 6, 18853-18858.
https://doi.org/10.1039/C8TA07241H
[71]  Duan, J., Wu, W., Nolan, A.M., et al. (2019) Lithium-Graphite Paste: An Interface Compatible Anode for Solid-State Batteries. Advanced Materials, 31, e1807243.
https://doi.org/10.1002/adma.201807243
[72]  Shao, Y., Wang, H., Gong, Z., et al. (2018) Drawing a Soft Interface: An Effective Interfacial Modification Strategy for Garnet-Type Solid-State Li Batteries. ACS Energy Letters, 3, 1212-1218.
https://doi.org/10.1021/acsenergylett.8b00453
[73]  Xia, Q., Sun, S., Xu, J., et al. (2018) Self-Standing 3D Cath-odes for All-Solid-State Thin Film Lithium Batteries with Improved Interface Kinetics. Small, 14, Article ID: e1804149.
https://doi.org/10.1002/smll.201804149
[74]  Sun, S., Xia, Q., Liu, J., et al. (2019) Self-Standing Oxygen-Deficient α-Moo3-X Nanoflake Arrays as 3D Cathode for Advanced All-Solid-State Thin Film Lithium Batteries. Journal of Mate-riomics, 5, 229-236.
https://doi.org/10.1016/j.jmat.2019.01.001
[75]  Zhao, Q., Liu, X., Stalin, S., et al. (2019) Solid-State Polymer Electrolytes with In-Built Fast Interfacial Transport for Secondary Lithium Batteries. Nature Energy, 4, 365-373.
https://doi.org/10.1038/s41560-019-0349-7
[76]  Inoue, T. and Mukai, K. (2016) Are All-Solid-State Lithium-Ion Batteries Really Safe? Verification by Differential Scanning Calorimetry with an All-Inclusive Microcell. ACS Applied Materials & Interfaces, 9, 1507-1515.
https://doi.org/10.1021/acsami.6b13224
[77]  Janek, J. and Zeier, W.G. (2016) A Solid Future for Battery Devel-opment. Nature Energy, 1, Article No. 16141.
https://doi.org/10.1038/nenergy.2016.141
[78]  Muramatsu, H., Hayashi, A., Ohtomo, T., et al. (2011) Structural Change of Li2S-P2S5 Sulfide Solid Electrolytes in the Atmosphere. Solid State Ionics, 182, 116-119.
https://doi.org/10.1016/j.ssi.2010.10.013
[79]  Ohtomo, T., Hayashi, A., Tatsumisago, M., et al. (2013) Character-istics of the Li2O-Li2S-P2S5 Glasses Synthesized by the Two-Step Mechanical Milling. Journal of Non-Crystalline Solids, 364, 57-61.
https://doi.org/10.1016/j.jnoncrysol.2012.12.044
[80]  Hayashi, A., Muramatsu, H., Ohtomo, T., et al. (2014) Im-proved Chemical Stability and Cyclability in Li2S-P2S5-P2O5-ZnO Composite Electrolytes for All-Solid-State Rechargea-ble Lithium Batteries. Journal of Alloys and Compounds, 591, 247-250.
https://doi.org/10.1016/j.jallcom.2013.12.191
[81]  Hayashi, A., Muramatsu, H., Ohtomo, T., et al. (2013) Im-provement of Chemical Stability of Li3PS4 Glass Electrolytes by Adding MxOy (M = Fe, Zn, and Bi) Nanoparticles. Journal of Materials Chemistry A, 1, 6320-6326.
https://doi.org/10.1039/c3ta10247e
[82]  Song, S., Wu, Y., Tang, W., et al. (2019) Composite Solid Polymer Elec-trolyte with Garnet Nanosheets in Poly (Ethylene Oxide). ACS Sustainable Chemistry & Engineering, 7, 7163-7170.
https://doi.org/10.1021/acssuschemeng.9b00143
[83]  Li, X., Wang, D., Wang, H., et al. (2019) Poly(Ethylene Ox-ide)-Li10snp2s12 Composite Polymer Electrolyte Enables High-Performance All-Solid-State Lithium Sulfur Battery. ACS Applied Materials & Interfaces, 11, 22745-22753.
https://doi.org/10.1021/acsami.9b05212
[84]  Zhang, N., He, J., Han, W., et al. (2019) Composite Solid Electrolyte PEO/Sn/Lialo2 for a Solid-State Lithium Battery. Journal of Materials Science, 54, 9603-9612.
https://doi.org/10.1007/s10853-019-03535-3
[85]  Zhang, J., Zheng, C., Lou, J., et al. (2019) Poly(Ethylene Oxide) Reinforced Li6PS5Cl Composite Solid Electrolyte for All-Solid-State Lithium Battery: Enhanced Electrochemical Perfor-mance, Mechanical Property and Interfacial Stability. Journal of Power Sources, 412, 78-85.
https://doi.org/10.1016/j.jpowsour.2018.11.036
[86]  Liu, X., Zhang, C., Gao, S., et al. (2020) A Novel Polyphos-phonate Flame-Retardant Additive towards Safety-Reinforced All-Solid-State Polymer Electrolyte. Materials Chemistry and Physics, 239, Article ID: 122014.
https://doi.org/10.1016/j.matchemphys.2019.122014
[87]  Shibutani, R, and Tsutsumi, H. (2012) Fire-Retardant Solid Polymer Electrolyte Films Prepared from Oxetane Derivative with Dimethyl Phosphate Ester Group. Journal of Power Sources, 202, 369-373.
https://doi.org/10.1016/j.jpowsour.2011.11.046
[88]  Zhou, X., Jiang, H., Zheng, H., et al. (2020) Nonflammable Hybrid Solid Electrolyte Membrane for a Solid-State Lithium Battery Compatible with Conventional Porous Electrodes. Journal of Membrane Science, 603, Article ID: 117820.
https://doi.org/10.1016/j.memsci.2020.117820
[89]  Liu, Q., Liu, Y., Jiao, X., et al. (2019) Enhanced Ionic Conduc-tivity and Interface Stability of Hybrid Solid-State Polymer Electrolyte for Rechargeable Lithium Metal Batteries. Energy Storage Materials, 23, 105-111.
https://doi.org/10.1016/j.ensm.2019.05.023
[90]  Liu, J., Shen, X., Zhou, J., et al. (2019) Nonflammable and High-Voltage-Tolerated Polymer Electrolyte Achieving High Stability and Safety in 4.9 V-Class Lithium Metal Battery. ACS Applied Materials & Interfaces, 11, 45048-45056.
https://doi.org/10.1021/acsami.9b14147
[91]  Kelly, J.C., Pepin, M., Huber, D.L., et al. (2012) Reversible Control of Electrochemical Properties Using Thermally-Responsive Polymer Electrolytes. Advanced Materials, 24, 886-889.
https://doi.org/10.1002/adma.201103340
[92]  Yang, H., Liu, Z., Chandran, B.K., et al. (2015) Self-Protection of Electrochemical Storage Devices via a Thermal Reversible Sol-Gel Transition. Advanced Materials, 27, 5593-5598.
https://doi.org/10.1002/adma.201502484
[93]  Shi, Y., Ha, H., Al-Sudani, A., et al. (2016) Thermoplastic Elasto-mer-Enabled Smart Electrolyte for Thermoresponsive Self-Protection of Electrochemical Energy Storage Devices. Ad-vanced Materials, 28, 7921-7928.
https://doi.org/10.1002/adma.201602239
[94]  Zhou, J., Qian, T., Liu, J., et al. (2019) High-Safety All-Solid-State Lithium-Metal Battery with High-Ionic-Conductivity Thermoresponsive Solid Polymer Electrolyte. Nano Letters, 19, 3066-3073.
https://doi.org/10.1021/acs.nanolett.9b00450
[95]  Shen, X., Li, Y., Qian, T., et al. (2019) Lithium Anode Stable in Air for Low-Cost Fabrication of a Dendrite-Free Lithium Battery. Nature Communications, 10, Article No. 900.
https://doi.org/10.1038/s41467-019-08767-0

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133