全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

2D Fusion Simulations and Experimental Confirmations of Print Paths Using Composite Particles with Particle Method for Fused Filament Fabrication

DOI: 10.4236/ojcm.2022.124009, PP. 111-130

Keywords: Carbon Fiber, Thermoplastic Resin, Computational Modelling, Short Carbon Fiber, Three-Dimensional Printer, Fusion Process

Full-Text   Cite this paper   Add to My Lib

Abstract:

Printing short fibre/thermoplastic composites using the fused filament fabrication method sometimes creates a gap between print paths. In this study, the two-dimensional moving particle semi-implicit method for liquid simulation was applied to simulate the print-path fusion process. The three-dimensional movement of the nozzle was simulated using the sliding motion of the nozzle. The method was applied to the printing of short carbon fibre/polyamide-6 composites, and the simulation results were compared with those of experiments. The simulated results of the cross-sectional configuration agreed well with the experimental results. This will enable the optimization of printing process parameters thus reducing the gap between print paths.

References

[1]  Love, L.J., Kunc, V., Rios, O., Duty, C.E., Elliott, A.M., Post, B.K., Smith, R.J. and Blue, C.A. (2014) The Importance of Carbon Fiber to Polymer Additive Manufacturing. Journal of Materials Research, 29, 1893-1898.
https://doi.org/10.1557/jmr.2014.212
[2]  Tekinalp, H.L., Kunc, V., Velez-Garcia, G.M., Duty, C.E., Love, L.J., Naskar, A.K., Blue, C.A. and Ozcan, S. (2014) Highly Oriented Carbon Fiber-Polymer Composites via Additive Manufacturing. Composites Science and Technology, 105, 144-150.
https://doi.org/10.1016/j.compscitech.2014.10.009
[3]  Postiglione, G., Natale, G.G., Griffini, Levi, M. and Turri, S. (2015) Conductive 3D Microstructures by Direct 3D Printing of Polymer/Carbon Nanotube Nanocomposites via Liquid Deposition Modelling. Composites Part A, 76, 110-114.
https://doi.org/10.1016/j.compositesa.2015.05.014
[4]  Matsuzaki, R., Ueda, M., Namiki, M., Jeong, T.-K., Asahara, H., Horiguchi, K., Nakamura, T., Todoroki, A. and Hirano, Y. (2016) Three-Dimensional Printing of Continuous-Fiber Composites by In-Nozzle Impregnation. Scientific Reports, 6, Article No. 23058.
https://doi.org/10.1038/srep23058
[5]  Wang, X., Jiang, M., Zhou, Z., Gou, J. and Hui, D. (2017) 3D Printing of Polymer Matrix Composites: A Review and Prospective. Composites Part B, 110, 442-458.
https://doi.org/10.1016/j.compositesb.2016.11.034
[6]  Parandoush, P. and Lin, D. (2017) A Review on Additive Manufacturing of Polymer-Fiber Composites. Composite Structures, 182, 36-53.
https://doi.org/10.1016/j.compstruct.2017.08.088
[7]  Ning, F., Cong, W., Qiu, J., Wei, J. and Wang S. (2015) Additive Manufacturing of Carbon Fiber Reinforced Thermoplastic Composites Using Fused Deposition Modelling. Composites Part B, 80, 369-378.
https://doi.org/10.1016/j.compositesb.2015.06.013
[8]  Ferreira, R.T., Amatte, I.C., Dutra, T.A. and Bürger, D. (2017) Experimental Characterization and Micrography of 3D Printed PLA and PLA Reinforced with Short Carbon Fibers. Composites Part B, 124, 88-100.
https://doi.org/10.1016/j.compositesb.2017.05.013
[9]  Ning, F., Cong, W., Hu, Y. and Wang, H. (2017) Additive Manufacturing of Carbon Fiber-Reinforced Plastic Composites Using Fused Deposition Modelling: Effects of Process Parameters on Tensile Properties. Journal of Composite Materials, 51, 451-462.
https://doi.org/10.1177/0021998316646169
[10]  Zhang, W., Cotton, C., Sun, J., Heider, D., Gu, B., Sun, B. and Chou, T.W. (2018) Interfacial Bonding Strength of Short Carbon Fiber/Acrylonitrile-Butadiene-Styrene Composites Fabricated by Fused Deposition Modelling. Composites Part B, 137, 51-59.
https://doi.org/10.1016/j.compositesb.2017.11.018
[11]  Naranjo-Lozada, J., Ahuett-Garza, H., Orta-Castañón, P., Verbeeten, W.M.H. and Sáiz-González, D. (2019) Tensile Properties and Failure Behavior of Chopped and Continuous Carbon Fiber Composites Produced by Additive Manufacturing. Additive Manufacturing, 26, 227-241.
https://doi.org/10.1016/j.addma.2018.12.020
[12]  Yavas, D., Zhang, Z., Liu, Q. and Wu, D. (2021) Fracture Behavior of 3D Printed Carbon Fiber-Reinforced Polymer Composites. Composites Science and Technology, 28, Article ID: 108741.
https://doi.org/10.1016/j.compscitech.2021.108741
[13]  Kubota, M., Hayakawa, K. and Todoroki, A. (2022) Effect of Build-Up Orientations and Process Parameters on the Tensile Strength of 3D Printed Short Carbon Fiber/PA-6 Composites. Advanced Composite Materials, 31, 119-136.
https://doi.org/10.1080/09243046.2021.1930497
[14]  Talagani, M.R., DorMohammadi, S., Dutton, R., Godines, C., Baid, H., Abdi, F., Kunc, V., Compton, B., Simunovic, S., Duty, C., Love, L., Post, B. and Blue, C. (2015) Numerical Simulation of Big Area Additive Manufacturing (3D Printing) of a Full Size Car. SAMPE Journal, 51, 27-36.
[15]  Makino, M., Fukuzawa, D., Murashima, T., Kawakami, M. and Furukawa, H. (2017) Analysis of Deposition Modelling by Particle Method Simulation. Microsystem Technologies, 23, 1177-1181.
https://doi.org/10.1007/s00542-016-3047-4
[16]  Yang, D., Wu, K., Wan, L. and Sheng, Y. (2017) A Particle Element Approach for Modelling the 3D Printing Process of Fibre Reinforced Polymer Composites. Journal of Manufacturing and Materials Processing, 1, 10-21.
https://doi.org/10.3390/jmmp1010010
[17]  Bertevas, E., Férec, J., Khoo, B.C., Ausias, G. and Phan-Thien, N. (2018) Smoothed Particle Hydrodynamics (SPH) Modelling of Fiber Orientation in a 3D Printing Process. Physics of Fluids, 30, Article ID: 103103.
https://doi.org/10.1063/1.5047088
[18]  Brenken, B., Barocio, E., Favaloro, A., Kunc, V. and Pipes, R.B. (2019) Development and Validation of Extrusion Deposition Additive Manufacturing Process Simulations. Additive Manufacturing, 25, 218-226.
https://doi.org/10.1016/j.addma.2018.10.041
[19]  Ouyang, Z., Bertevas, E., Parc, L., Khoo, B.C., Phan-Thien, N., Férec, J. and Ausias, G. (2019) Smoothed Particle Hydrodynamics Simulation of Fiber-Filled Composites in a Non-Isothermal Three-Dimensional Printing Process. Physics of Fluids, 31, Article ID: 123102.
https://doi.org/10.1063/1.5130711
[20]  Ouyang, Z., Bertevas, E., Wang, D., Khoo, B.C., et al. (2020) Smoothed Particle Hydrodynamics Study of a Non-Isothermal and Thermally Anisotropic Fused Deposition Modelling Process for a Fiber-Filled Composite. Physics of Fluids, 32, Article ID: 053106.
https://doi.org/10.1063/5.0004527
[21]  Zhang, H., Zhang, L., Zhang, H., Wu, J., An, X. and Yang, D. (2021) Fibre Bridging and Nozzle Clogging in 3D Printing of Discontinuous Carbon Fibre-Reinforced Polymer Composites: Coupled CFD-DEM Modelling. The International Journal of Advanced Manufacturing Technology, 117, 3549-3562.
https://doi.org/10.1007/s00170-021-07913-7
[22]  Lee, S.W., Cho, S.J. and Kim, W. (2022) Development of Thermo-Fluid Simulation Technique for Extruder and Chamber of FDM-Type 3D Printer for Printing High-Melting-Point Materials. Microsystem Technologies.
https://doi.org/10.1007/s00542-022-05270-3
[23]  Farazin, A. and Mohammadimehr, M. (2022) Effect of Different Parameters on the Tensile Properties of Printed Polylactic Acid Samples by FDM: Experimental Design Tested with MDs Simulation. The International Journal of Advanced Manufacturing Technology, 118, 103-118.
https://doi.org/10.1007/s00170-021-07330-w
[24]  Fraga Fiho, C.A.D. (2019) Smoothed Particle Hydrodynamics Fundamentals and Basic Applications in Continuum Mechanics. Springer, Cham.
[25]  Imaeda, Y., Todoroki, A., Matsuzaki, R., Ueda, M. and Hirano, Y. (2021) Modified Moving Particle Semi-Implicit Method for 3D Print Process Simulations of Short Carbon Fiber/Polyamide-6 Composites. Composites Part C, 6, Article ID: 100195.
https://doi.org/10.1016/j.jcomc.2021.100195
[26]  Koshizuka, S., Shibata, K., Kondo, M. and Matsunaga, T. (2018) Moving Particle Semi-Implicit Method: A Mesh Free Particle Method for Fluid Dynamics. Academic Press, London.
[27]  Voller, V.R. and Prakash, C. (1987) A Fixed-Grid Numerical Modelling Methodology for Convection-Diffusion Mushy Region Phase-Change Problems. International Journal of Heat and Mass Transfer, 30, 1709-1720.
https://doi.org/10.1016/0017-9310(87)90317-6
[28]  Tanaka, M. and Matsunaga, T. (2010) Stabilization and Smoothing of Pressure on MPS Method by Quasi-Compressibility. Journal of Computational Physics, 229, 4279-4290.
https://doi.org/10.1016/j.jcp.2010.02.011
[29]  Carreau, P.J. (1972) Rheological Equations from Molecular Network Theories. Transactions of the Society of Rheology, 16, 99-127.
https://doi.org/10.1122/1.549276
[30]  Kondo, M., Koshizuka, S. and Takimoto, M. (2007) Surface Tension Model Using Interparticle Potential Force in Moving Particle Semi-Implicit Method. Transactions of Japan Society of Computational Engineering and Science, 2007, Article ID: 20070021. (In Japanese)
https://doi.org/10.1115/FEDSM2007-37215
[31]  Micro Carbon Fiber Filled Nylon That Forms the Foundation of Markforged Composite Parts.
https://markforged.com/materials/plastics/onyx
[32]  Araki, K. and Nakamura, K. (1988) Melt Flow Property of Fiber Reinforced Nylon and Polycarbonate. Journal of the Textile Machinery Society of Japan, 42, 39-47. (In Japanese)
https://doi.org/10.4188/transjtmsj.41.3_T39

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133