全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Smart Grid  2022 

智能微网中逆变器拓扑及控制策略综述
Review of Inverter Topology and Control Strategy in Intelligent Microgrid

DOI: 10.12677/SG.2022.125016, PP. 155-167

Keywords: 分布式能源,电能质量,逆变器拓扑结构,控制策略
Distributed Energy
, Power Quality, Inverter Topology, Control Strategy

Full-Text   Cite this paper   Add to My Lib

Abstract:

随着光伏和电池储能系统等分布式能源在配电系统中的渗透,如何基于逆变器的控制策略来改善电能质量出现了新的挑战。本文从逆变器在智能微网中的角度出发,阐述了智能微网中逆变器基本原理及经典逆变器类型;分析了不同的逆变器拓扑结构并提炼和总结了它们不同的功能特点及存在的优缺点;探析影响到电能质量输出出现的问题及解决措施,并归纳出当前逆变器的不同控制策略。最后,对逆变器技术未来的研究方向进行了展望。
With the penetration of distributed energy, such as photovoltaic and battery energy storage systems in the distribution system, how to improve the power quality based on the control strategy of the inverter presents new challenges. In this paper, from the perspective of inverter in intelligent microgrid, the basic principle of inverter in the intelligent microgrid and the classic inverter types are described; Different inverter topologies are analyzed and their different functional characteristics and advantages and disadvantages are summarized; This paper analyzes the problems and solutions that affect the power quality output, and summarizes the different control strategies of the current inverter. Finally, the future research direction of inverter technology has prospected.

References

[1]  Dileep, G. (2020) A Survey on Smart Grid Technologies and Applications. Renewable Energy, 146, 2589-2625.
https://doi.org/10.1016/j.renene.2019.08.092
[2]  Ali Khan, M.Y. (2020) A Comprehensive Review on Grid Connected Photovoltaic Inverters, Their Modulation Techniques, and Control Strategies. Energies (Basel), 13, Article No. 4185.
https://doi.org/10.3390/en13164185
[3]  Chen, X., et al. (2018) Injected Grid Current Quality Improvement for a Voltage-Controlled Grid-Connected Inverter. IEEE Transactions on Power Electronics, 33, 1247-1258.
https://doi.org/10.1109/TPEL.2017.2678525
[4]  Albatran, S., et al. (2017) Online Optimal Switching Frequency Selection for Grid-Connected Voltage Source Inverters. Electronics (Basel), 6, Article No. 110.
https://doi.org/10.3390/electronics6040110
[5]  Sangsefidi, Y., Ziaeinejad, S. and Mehrizi-Sani, A. (2017) Low Switching Frequency-Based Predictive Control of a Grid-Connected Voltage-Sourced Converter. IEEE Transactions on Energy Conversion, 32, 686-697.
https://doi.org/10.1109/TEC.2016.2642123
[6]  Li, Y. (2020) Autonomous Control Strategy for Microgrid Operating Modes Smooth Transition. IEEE Access, 8, 142159-142172.
https://doi.org/10.1109/ACCESS.2020.3014255
[7]  Hornik, T. and Zhong, Q.C. (2010) H∞ Repetitive Voltage Control of Grid-Connected Inverters with a Frequency Adaptive Mechanism. IET Power Electronics, 3, 925-935.
https://doi.org/10.1049/iet-pel.2009.0345
[8]  Ortiz, L. (2020) A Review on Control and Fault-Tolerant Control Systems of AC/DC Microgrids. Heliyon, 6, e04799.
https://doi.org/10.1016/j.heliyon.2020.e04799
[9]  Nithara, P.V. and Eldho, R.P. (2021) Comparative Analysis of Different Control Strategies in Single Phase Standalone Inverter. 2021 7th International Conference on Advanced Computing and Communication Systems (ICACCS), Coimbatore, 19-20 March 2021, 1105-1109.
https://doi.org/10.1109/ICACCS51430.2021.9441547
[10]  周广磊. 不平衡负载下微网逆变器控制策略的研究[D]: [硕士学位论文]. 镇江: 江苏大学, 2020: 89.
[11]  Zhou, X.-S., Cui, L.-Q. and Ma, Y.-J. (2011) Research on Control of Micro Grid. 2011 Third International Conference on Measuring Technology and Mechatronics Automation, Shanghai, 6-7 January 2011, 1129-1132.
[12]  顾和荣. 智能微网逆变器电流下垂控制分析与实验研究[J]. 电力系统保护与控制, 2013, 41(18): 45-48.
[13]  高明智. 智能微型电网系统孤岛模式中逆变器并联控制技术的研究[D]: [博士学位论文]. 杭州: 浙江大学, 2014: 233.
[14]  徐帅, 张建忠. 多电平电压源型逆变器的容错技术综述[J]. 电工技术学报, 2015, 30(21): 39-50.
[15]  Kim, M. (2019) Comprehensive Review of Islanding Detection Methods for Distributed Generation Systems. Energies (Basel), 12, Article No. 837.
https://doi.org/10.3390/en12050837
[16]  滕俊杰, 李素敏. 虚拟同步发电机功率耦合机理及解耦策略研究[J]. 电气传动, 2019, 49(10): 60-69.
[17]  Gonzales-Zurita, ó. (2020) Review on Multi-Objective Control Strategies for Distributed Generation on Inverter-Based Microgrids. Energies (Basel), 13, Article No. 3483.
https://doi.org/10.3390/en13133483
[18]  孙亮, 等. 基于改进虚拟同步发电机的多逆变器频率无差控制策略[J]. 电力系统保护与控制, 2021, 49(11): 18-27.
[19]  马铱林. 改善虚拟同步发电机阻尼特性的设计方法[J]. 电网技术, 2021, 45(1): 269-275.
[20]  王林. 基于虚拟阻抗的逆变器并联系统柔性功率调控策略[J]. 船电技术, 2021, 41(6): 26-34.
[21]  姚欢, 等. 级联H桥逆变器驱动永磁同步电机的鲁棒模型预测电流控制策略[J]. 中国电机工程学报, 2021, 42(14): 1-11.
[22]  曹以龙, 余小婵. 采用LCL滤波器的无电压传感器三相并网逆变器技术[J]. 上海电力大学学报, 2021, 37(3): 211-216.
[23]  Du, W., et al. (2021) Modeling of Grid-Forming and Grid-Following Inverters for Dynamic Simulation of Large-Scale Distribution Systems. IEEE Transactions on Power Delivery, 36, 2035-2045.
https://doi.org/10.1109/TPWRD.2020.3018647
[24]  Bidram, A. (2013) Distributed Cooperative Secondary Control of Microgrids Using Feedback Linearization. IEEE Transactions on Power Systems, 28, 3462-3470.
https://doi.org/10.1109/TPWRS.2013.2247071
[25]  Minambres-Marcos, V. (2014) Generic Losses Model for Traditional Inverters and Neutral Point Clamped Inverters. Elektronika ir Elektrotechnika, 20, 84-88.
https://doi.org/10.5755/j01.eee.20.5.7106
[26]  Vairavasundaram, I. (2021) A Review on Small Power Rating PV Inverter Topologies and Smart PV Inverters. Electronics (Basel), 10, Article No. 1296.
https://doi.org/10.3390/electronics10111296
[27]  Malinowski, M., Rodriguez, J. and Pérez, M.A. (2010) A Survey on Cascaded Multilevel Inverters. IEEE Transactions on Electron Devices, 57, 2197-2206.
https://doi.org/10.1109/TIE.2009.2030767
[28]  Jamaludin, J., Rahim, N.A. and Ping, H.W. (2015) Multilevel Voltage Source Inverter with Optimised Usage of Bidirectional Switches. IET Power Electron, 8, 378-390.
https://doi.org/10.1049/iet-pel.2014.0097
[29]  Sano, K., Yonezawa, R. and Noda, T. (2019) An Electromagnetic Transient Simulation Model of Grid-Connected Inverters for Dynamic Voltage Analysis of Distribution Systems. Electrical Engineering in Japan, 206, 11-21.
https://doi.org/10.1002/eej.23179
[30]  周识远. 弱电网下光伏并网逆变器电能质量控制策略研究[J]. 东北电力技术, 2021, 42(5): 6-9.
[31]  Peng, Y. (2020) Modeling and Stability Analysis of Inverter-Based Microgrid under Harmonic Conditions. IEEE Transactions on Smart Grid, 11, 1330-1342.
https://doi.org/10.1109/TSG.2019.2936041
[32]  Panigrahi, B.K. (2021) A Comprehensive Review on Intelligent Islanding Detection Techniques for Renewable Energy Integrated Power System. International Journal of Energy Research, 45, 14085-14116.
https://doi.org/10.1002/er.6641
[33]  Islam, M., Yang, F. and Amin, M. (2021) Control and Optimisation of Networked Microgrids: A Review. IET Renewable Power Generation, 15, 1133-1148.
https://doi.org/10.1049/rpg2.12111
[34]  Aminzadeh, S., Tarafdar Hagh, M. and Seyedi, H. (2020) Reactive Power Management for Microgrid Frequency Control. International Journal of Electrical Power & Energy Systems, 120, Article ID: 105959.
https://doi.org/10.1016/j.ijepes.2020.105959
[35]  Vasquez, J.C. (2009) Adaptive Droop Control Applied to Voltage-Source Inverters Operating in Grid-Connected and Islanded Modes. IEEE Transactions on Industrial Electronics (1982), 56, 4088-4096.
https://doi.org/10.1109/TIE.2009.2027921
[36]  龚仁喜, 黎洛琦, 王奇. 一种虚拟同步发电机自适应阻尼补偿方法[J]. 电测与仪表, 2021, 1-7.
[37]  Wei, Y. (2016) Control Strategy for Parallel-Operated Virtual Synchronous Generators. 2016 IEEE 8th International Power Electronics and Motion Control Conference (IPEMC-ECCE Asia), Hefei, 22-26 May 2016, 2015-2021.
[38]  曹以龙, 余小婵. 采用LCL滤波器的无电压传感器三相并网逆变器技术[J]. 上海电力大学学报, 2021, 37(3): 211-216.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413