全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

High Performance for Cu(In,Ga)Se2 Quaternary System-Based Solar Cells with Alternative Buffer Layers

DOI: 10.4236/ampc.2022.129015, PP. 207-219

Keywords: Thin Film Solar Cells, CIGS Absorber, Alternative Buffer Layers, SCAPS-1D, Electrical Parameters

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this study, the authors investigated the performance of different buffer layers through the electrical parameters such as Jsc, Voc, QE and η of the quaternary system Cu(In,Ga)Se2 solar cells. The performance of Cu(In,Ga)Se2solar cells has been modeled and numerically simulated by using the SCAPS- 1D device simulation tool. The cells with a ZnSe, Zn(O,S) and (Zn,Mg)O buffer layers were compared with the reference CdS buffer layer. The investigation of ZnSe, Zn(O, S) and (Zn,Mg)O-based cells to substitute the traditional CdS in the future shows that the ZnSe-buffer layer is a potential material to replace CdS, which revealed the best efficiency of 20.76%, the other electrical parameters are: JSC = 34.6 mA/cm2, VOC = 0.76 V and FF = 79.6%. The losses as a function of the temperature are estimated at 0.1%/K, among all kinds of buffer layers studied. We have also shown that the use of a high band-gap buffer layer is necessary to obtain a better short-circuit current density JSC. From our results, we note that the chalcogenide solar cells with Zn-based alternative buffer layer have almost the same stability thatthe traditional CdS buffer layer solar cells?have.

References

[1]  Ouedraogo, S., Kebre, M.B., Ngoupo, A.T., Oubda, D., Zougmore, F. and Ndjaka, J.-M. (2020) Required CIGS and CIGS/Mo Interface Properties for High-Efficiency Cu(In, Ga)Se2 Based Solar Cells. Advances in Materials Physics and Chemistry, 10, 151-166.
https://doi.org/10.4236/ampc.2020.107011
[2]  Zongo, A., Oubda, D., Ouédraogo, S., Kébré, M.B., Diasso, A., Sankara, I., Traore, B., Zougmoré, F., Koalga, Z. and Ouattara, F. (2021) Optimization of Mo/Cu(In, Ga)Se2/CdS/ZnO Hetero-Junction Solar Cell Performance by Numerical Simulation with SCAPS-1D. Journal of Materials Science and Engineering B, 11, 156-167.
https://doi.org/10.17265/2161-6221/2021.10-12.004
[3]  Ouédraogo, S., Traoré, B., Kébré, M.B., Oubda, D., Zongo, A., Sankara, I. and Zougmoré, F. (2020) Performance Enhancement Strategy of Ultra-Thin CIGS Solar Cells. American Journal of Applied Sciences, 17, 246-255.
https://doi.org/10.3844/ajassp.2020.246.255
[4]  Ouedraogo, S., Kebre, M.B., Ngoupo, A.T., Oubda, D. and Zougmore, F. (2020) Comprehensive Analysis of CuIn1-xGaxSe2 Based Solar Cells with Zn1-yMgyO Buffer Layer. Materials Sciences and Applications, 11, 880-892.
https://doi.org/10.4236/msa.2020.1112058
[5]  Takashi, M., Takuya, M., Hideyuki, T., Yoshihiro, H., Takayuki, N., Yasuhiro, H., Takeshi, U. and Masatoshi, K. (2001) Theoretical Analysis of the Effect of Conduction Band Offset of Window/CIS Layers on Performance of CIS Solar Cells Using Device Simulation. Solar Energy Materials and Solar Cells, 67, 83-88.
https://doi.org/10.1016/S0927-0248(00)00266-X
[6]  Huang, C.H., Li, S.S., Shafarman, W.N., Chang, C.-H., Lambers, E.S., Rieth L., Johnson, J.W., Kim, S., Stanbery, B.J., Anderson, T.J. and Holloway, P.H. (2001) Study of Cd-Free Buffer Layers Using Inx(OH,S)y on CIGS Solar Cells. Solar Energy Materials and Solar Cells, 69, 131-137.
https://doi.org/10.1016/S0927-0248(00)00386-X
[7]  Susanne, S. (2004) Alternative Buffers for Chalcopyrite Solar Cells. Solar Energy, 77, 767-775.
https://doi.org/10.1016/j.solener.2004.06.018
[8]  Charlotte, P.B., Torndahl, T., Hultqvist, A., Kessler, J. and Edoff, M. (2007) Optimization of ALD-(Zn,Mg)O Buffer Layers and (Zn,Mg)O/Cu(In,Ga)Se2 Interfaces for Thin Film Solar Cells. Thin Solid Films, 515, 6024-6027.
https://doi.org/10.1016/j.tsf.2006.12.047
[9]  Hariskos, D., Fuchs, Y.B., Menner, R., Naghavi, N., Hubert, C., Lincot, D. and Powalla, M. (2009) The Zn(S,O,OH)/ZnMgO Buffer in Thin-Film Cu(In,Ga) (Se,S)2- Based Solar Cells Part II: Magnetron Sputtering of the ZnMgO Buffer Layer for In-Line Co-Evaporated Cu(In,Ga)Se2 Solar Cells. Progress in Photovoltaics: Research and Applications, 17, 479-488.
https://doi.org/10.1002/pip.897
[10]  Minemoto, T., Akira, O. and Hideyuki, T. (2011) Sputtered ZnO-Based Buffer Layer for Band Offset Control in Cu(In,Ga)Se2 Solar Cells. Thin Solid Films, 519, 7568- 7571.
https://doi.org/10.1016/j.tsf.2010.12.117
[11]  Daouda, O., Marce, L.B.K., Francois, Z., Donatien, N. and Frédéric, O. (2015) Numerical Simulation of Cu(In,Ga)Se2 Solar Cells Performances. Journal of Energy and Power Engineering, 9, 1047-105.
https://doi.org/10.17265/1934-8975/2015.12.002
[12]  Niemegeers, A., Burgelman, M., Herberholz, R., Rau, U., Hariskos, D. and Schock, H.-W. (1998) Model for Electronic Transport in Cu(In,Ga)Se2 Solar Cells. Progress in Photovoltaics: Research and Applications, 6, 407-421.
https://doi.org/10.1002/(SICI)1099-159X(199811/12)6:6<407::AID-PIP230>3.0.CO;2-U
[13]  Khelifi, S. and Belghachi, A. (2004) The Role of the Window Layer in GaAs Solar Cell Performance. Revu of Energy Renewable, 7, 13-21.
[14]  Niemergeers, A. and Marc, B. (1997) Effects of the Au/CdTe Back Contact on IV and CV Characteristics of Au/CdTe/CdS/TCO Solar Cells. Journal of Applied Physics, 81, 2881-2886.
https://doi.org/10.1063/1.363946
[15]  Burgelman, M., Nollet, P. and Degrave, S. (2000) Modelling Polycrystalline Semiconductor Solar Cells. Thin Solid Film, 361-362, 527-532.
https://doi.org/10.1016/S0040-6090(99)00825-1
[16]  Liu, Y.M., Yun, S. and Rockett, A. (2011) A New Simulation Software of Solar Cells—wxAMPS. Solar Energy Materials and Solar Cells, 98, 124-128,
https://doi.org/10.1016/j.solmat.2011.10.010
[17]  Ramanathan, K.H., Wiesner, S., Asher, D., Niles, R., Bhattacharya, N., Contreras, M.A. and Noufi, R. (1998) High-Efficiency Cu(In,Ga)Se2 Thin Film Solar Cells without Intermediate Buffer Layers. 2nd World Conference and Exhibition on Photovoltaic Solar Energy, Vienna, 6-10 July 1998.
[18]  Puvaneswaran, C., Mohammad, I.H. and Nowshad, A. (2010) Performance Analysis of Copper-Indium-Gallium-Diselenide (CIGS) Solar Cells with Various Buffer Layers by SCAPS. Current Applied Physics, 10, S387-S391.
https://doi.org/10.1016/j.cap.2010.02.018
[19]  Yan, X. (2014) Fabrication and Characterization of CuInGaSe2 Films by Cathode Sputtering Study of Defects by Spectroscopy of Deep Traps by Charge. Ph.D. Thesis, Nantes University, Nantes.
[20]  Charlotte, P.B. (2006) Band Alignment Between ZnO-Based and Cu(In,Ga)Se2. Thin Film for High Efficiency Solar Cells. Ph.D. Thesis, Uppsala University, Uppsala.
[21]  Froger, V. (2012) Thin Layers of Zinc Chalcogenides Deposited by Spray-CVD Assisted by Infrared Radiation for Photovoltaic Applications. Ph.D. Thesis, National School of Arts and Crafts, Meknes.
[22]  Buffière, M., Harel, S., Arzel, L., Deudon, C., Barreau, N. and Kessler, J. (2011) Fast Chemical Bath Deposition of Zn(O,S) Buffer Layers for Cu(In,Ga)Se2 Solar Cells. Thin Solid Films, 519, 7575-7578.
https://doi.org/10.1016/j.tsf.2011.01.104
[23]  Bouloufa, A., Djessas, K. and Zegadi, A. (2007) Numerical Simulation of CuInxGa1-xSe2 Solar Cells by AMPS-1D. Thin Solid Films, 515, 6285-6287. .
https://doi.org/10.1016/j.tsf.2006.12.110
[24]  Gloeckler, M. (2005) Device Physics of Cu(In,Ga)Se2 Thin-Film Solar Cells. Ph.D. Thesis, Colorado State University, Fort Collins.
[25]  Pudov, O.A. (2005) Impact of Secondary Barriers on CuIn1-xGaxSe2 Solar-Cell Operation. Ph.D. Thesis, Colorado State University, Fort Collins.
[26]  Ouédraogo, S. (2016) Numerical Modeling of a CIGS-Based Thin-Film Solar Cell. Ph.D. Thesis, University of Ouagadougou, Ouagadougou.
[27]  Gloeckler, M., Fahrenbruch, A.L. and Sites, J.R. (2003) Numerical Modeling of CIGS and CdTe Solar Cells: Setting the Baseline. 3rd World Conference on Photovoltaic Energy Conversion, Osaka, 11-18 May 2003, 491-494.
[28]  Veschetti, Y. (2005) Modeling, Characterization and Production of New Photovoltaic Structures on Thin Silicon Substrate. Ph.D. Thesis, University Louis Pasteur Strasbourg I, Strasbourg.
[29]  Meyer, B.K., Polity, A., Farangis, B., He, Y., Hasselkamp, D., Kramer, T. and Wang, C. (2004) Structural Properties and Bandgap Bowing of ZnO1-x Sx Thin Films Deposited by Reactive Sputtering. Applied Physics Letters, 85, Article No. 4929.
https://doi.org/10.1063/1.1825053
[30]  Markus, H. and Christian, H. (2011) Auger Recombination Rates in ZnMgO from First Principles. Journal of Applied Physics, 110, Article No. 083103.
https://doi.org/10.1063/1.3651391
[31]  Oubda, D. (2018) Characterization of a Thin-Film Solar Cell Based on of CIGS Depending on the Nature of the Buffer Layer. University of Ouagadougou, Ouagadougou.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133