全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A New Fluorescent Chemosensor for Selective and Sensitive Detection of Mn2+ in Acidic Medium

DOI: 10.4236/abc.2022.125014, PP. 161-170

Keywords: Fluorescent Chemosensor, Mn2+, Fluorescence Quenching, Selectivity

Full-Text   Cite this paper   Add to My Lib

Abstract:

Recently, fluorescent sensors have attracted considerable attention in their sensitive and selective determination of heavy metal ions in the aqueous acidic medium due to their advantages such as low cost and easy handling. In this study, the bathocuproine (BCP) compound was used as a fluorescent chemosensor. The selectivity and sensitivity of BCP have been investigated against some metal ions of biological and environmental importance. The results obtained from the ultraviolet-visible region (UV-vis.) and the fluorescence spectroscopy experiments revealed that the BCP sensor showed selectivity and sensitivity only to Manganese (II) ions in the experimental conditions studied. In addition, the binding stoichiometry of BCP and Mn2+ was determined to be 1:1 by the Benesi-Hildebrand method.

References

[1]  Pathak, R.K., Tabbasum, K., Rai, A., Panda, D. and Rao, C.P. (2012) Pyrophosphate Sensing by a Fluorescent Zn2+ Bound Triazole Linked Imino-Thiophenyl Conjugate of Calix[4]arene in HEPES Buffer Medium: Spectroscopy, Microscopy, and Cellular Studies. Analytical Chemistry, 84, 5117-5123.
https://doi.org/10.1021/ac301009h
[2]  Zhou, J.R., Liu, D.P., He, Y., Kong, X.J., Zhang, Z.M., Ren, Y.P., Long, L.S., Huan, R.B. and Zheng, L.S, (2014) A highly Selective Colorimetric Chemosensor for Cobalt(II) Ions Based on a Tripodal Amide Ligand. Dalton Transactions, 43, 11579-11586.
https://doi.org/10.1039/C4DT00776J
[3]  Hong, L., Xu, C., Oeal, S., Bi, H., Huang, M., Zheng, W. and Zeng, S. (2014) Roles of P-Glycoprotein and Multidrug Resistance Protein in Transporting Para-Aminosalicylic Acid and Its N-Acetylated Metabolite in Mice Brain. Acta Pharmacologica Sinica, 35, 1577-1585.
https://doi.org/10.1038/aps.2014.103
[4]  Takeda, A. (2003) Manganese Action in Brain Function. Brain Research Reviews, 41, 79-87.
https://doi.org/10.1016/S0165-0173(02)00234-5
[5]  Mutaftchiev, K.L. (2004) Manganese (II)-1,10-Phenanthroline-Azo Dye-Potassium Periodate System for Kinetic Spectrophotometric Determination of Nanogram Levels of Manganese. Analytical Letters, 37, 2869-2879.
https://doi.org/10.1081/AL-200032113
[6]  Oszlánczi, G., Vezér, T., Sárközi, L., Horváth, E., Kónya, Z. and Papp, A. (2010) Functional Neurotoxicity of Mn-Containing Nanoparticles in Rats. Ecotoxicology and Environmental Safety, 73, 2004-2009.
https://doi.org/10.1016/j.ecoenv.2010.09.002
[7]  Hayakawa, N., Asayama, S., Noda, Y., Shimizu, T. and Kawakami, H. (2012) Pharmaceutical Effect of Manganese Porphyrins on Manganese Superoxide Dismutase Deficient Mice. Molecular Pharmaceutics, 9, 2956-2959.
https://doi.org/10.1021/mp300147v
[8]  Li, J., Gao, J., Xiong, W., Li, P., Zhang, H., Zhao, Y. and Zhang, Q. (2014) Pyridinium-Fused Pyridinone: A Novel, “Turn-On” Fluorescent Chemodosimeter for Cyanide. Chemistry—An Asian Journal, 9, 121-125.
https://doi.org/10.1002/asia.201301144
[9]  Liu, W., Jiang, J., Chen, C., Tang, X., Shi, J., Zhang, P., Zhang, K., Li, Z., Dou, W. and Yang, L. (2014) Water-Soluble Colorimetric and Ratiometric Fluorescent Probe for Selective Imaging of Palladium Species in Living Cells. Inorganic Chemistry, 53, 12590-12594.
https://doi.org/10.1021/ic502223n
[10]  Lee, S.A., You, G.R., Choi, Y.W., Jo, H.Y., Kim, A.R., Noh, I., Kim, S.J., Kim, Y. and Kim, C. (2014) A New Multifunctional Schiff Base as a Fluorescence Sensor for Al3+ and a Colorimetric Sensor for CN− in Aqueous Media: An Application to Bioimaging. Dalton Transactions, 43, 6650-6659.
https://doi.org/10.1039/C4DT00361F
[11]  You, G.R., Park, G.J., Lee, S.A., Choi, Y.W., Kim, Y.S., Lee, J.J. and Kim, C. (2014) A Single Chemosensor for Multiple Target Anions: The Simultaneous Detection of CN− and OAc− in Aqueous Media. Sensors and Actuators B: Chemical, 202, 645-655.
https://doi.org/10.1016/j.snb.2014.05.124
[12]  Park, G.J., Jo, H.Y., Ryu, K.Y. and Kim, C. (2014) A New Coumarin-Based Chromogenic Chemosensor for the Detection of Dual Analytes Al3+ and F−. RSC Advances, 4, 63882-63890.
https://doi.org/10.1039/C4RA11913D
[13]  Raju, V., Selva Kumar, R., Tharakeswar, Y. and Ashok Kuma, S.K. (2019) A Multifunctional Shiff-Base as Chromogenic Chemosensor for Mn2+ and Fluorescent Chemosensor for Zn2+ in Semi-Aqueous Environment. Inorganica Chimica Acta, 493, 49-56.
https://doi.org/10.1016/j.ica.2019.04.053
[14]  Normandin, L. and Hazell, A.S. (2002) Manganese Neurotoxicity: An Update of Pathophysiologic Mechanisms. Metabolic Brain Disease, 17, 375-387.
https://doi.org/10.1023/A:1021970120965
[15]  Na, Y.J., Park, G.J., Jo, H.Y., Lee, S.A. and Kim, C. (2014) A Colorimetric Chemosensor Based on a Schiff Base for Highly Selective Sensing of Cyanide in Aqueous Solution: The Influence of Solvents. New Journal of Chemistry, 38, 5769-5776.
https://doi.org/10.1039/C4NJ01199F
[16]  Xiang, D., Zhang, W., Dong, Z., Chen, W., Wang, J., Xu, H. and Lu, H. (2020) A Novel On-Off Fluorescent Probe with Rapid Response for the Selective and Sensitive Detection of Co2+. Inorganic Chemistry Communications, 111, Article ID: 107582.
https://doi.org/10.1016/j.inoche.2019.107582
[17]  Fan, L., Li, T., Hu, M., Ma, F., Yu, B. and Tian, J. (2019) Rapid Quantification of Bioactive Lentinan with an Aniline Blue Fluorescent Method. Pharmacology & Pharmacy, 10, 318-328.
https://doi.org/10.4236/pp.2019.106026
[18]  Serrat, F.B. (1998) 3,3',5,5'-Tetramethylbenzidme for the Colorimetric Determination of Manganese in Water. Microchimica Acta, 129, 77-80.
https://doi.org/10.1007/BF01246852
[19]  Beyer Jr., W.F. and Fridovich, I. (1988) An Ultrasensitive Colorimetric Assay for Manganese. Analytical Biochemistry, 170, 512-519.
https://doi.org/10.1016/0003-2697(88)90666-5
[20]  Touati, D. (2000) Iron and Oxidative Stress in Bacteria. Archives of Biochemistry and Biophysics, 373, 1-6.
https://doi.org/10.1006/abbi.1999.1518
[21]  Ay, U. and Sarli, S.E. (2018) Investigation by Fluorescence Technique of the Quenching Effect of Co2+ and Mn2+ Transition Metals, on Naphthalene-Methyl-Beta-Cyclodextrin Host-Guest Inclusion Complex. Journal of Fluorescence, 28, 1371-1378.
https://doi.org/10.1007/s10895-018-2301-9
[22]  Sarli, S.E. and Ay, U. (2019) An Experimental Study to Synthesize and Characterize Host-Guest Encapsulation of Anthracene, and the Quenching Effects of Co and Ni. Journal of Solution Chemistry, 48, 1535-1546.
https://doi.org/10.1007/s10953-019-00932-9
[23]  Sarli, S.E. and Ay, U. (2020) Formation Mechanism and Photo Physical Behaviors of Pyrene-Methyl-Beta-Cyclodextrin Complex at Excited State. Inorganic Chemistry Communications, 114, Article ID: 107820.
https://doi.org/10.1016/j.inoche.2020.107820
[24]  Jiang, Z.J., Lv, H.S., Zhu, J. and Zhao, B.X. (2012) New Fluorescent Chemosensor Based on Quinoline and Coumarin for Cu2+. Synthetic Metals, 162, 2112-2116.
https://doi.org/10.1016/j.synthmet.2012.09.013

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413