A set of borophosphate glasses doped with alkali and transition metal (TM) ions have been synthesized. The glasses were carried through; annealing, XRD, density, DC conductivity studies. Molar volume and density varied nonlinearly. High temperature activation energy is analysed taking into consideration of Mott’s SPH model. The low temperature electrical conductivity was analysed by Mott and Greaves VRH. Several polaron hopping related parameters at high temperature region and density of states at low temperature region were computed. The high temperature DC activation energy measured by conductivity, calculated numerous pertained parameters varied nonlinearly with mole fraction of vanadium content. The Study exhibits DC electrical conduction is due to both alkali and transition metal ions and thus confirms the mixed conductivity. A crossover conduction mechanism from the ionic dominant region to polaronic predominant region has been also observed. Studies revealed the single transition effect at 0.4 mol fraction of V2O5 content.
References
[1]
Karabulut, M., Yuce, B., Bozdogan, O., Ertap, H. and Mammadov, G.M. (2011) Effect of Boron Addition on the Structure and Properties of Iron Phosphate Glasses. Journal of Non-Crystalline Solids, 357, 1455-1462.
https://doi.org/10.1016/j.jnoncrysol.2010.11.023
[2]
Famprikis, T., Canepa, P., Dawson, J.A., Islam, M.S. and Masquelier, C. (2019) Fundamentals of Inorganic Solid-State Electrolytes for Batteries. Nature Materials, 18, 127-1291. https://doi.org/10.1038/s41563-019-0431-3
[3]
Khan, S. and Singh, K. (2020) Structural, Optical, Thermal and Conducting Properties of V2-xLixO5-δ (0.15 ≤ x ≤ 0.30) Systems. Scientific Reports, 10, Article No. 1089. https://doi.org/10.1038/s41598-020-57836-8
[4]
Jha, A. (2016) Inorganic Glasses for Photonics: Fundamentals, Engineering, and Applications. Wiley, Hoboken. https://doi.org/10.1002/9781118696088
https://books.google.com/books?hl=en&lr=&id=R6DLCgAAQBAJ&oi=fnd&pg=PR13&dq=A.+Jha,+Inorganic+Glasses+for+Photonics:+Fundamentals, +Engineering,+and+Applications.+2016.+Accessed:+Jun.+06,+2022.&ots=mIPuE6BTQF&sig=PkEPw8QdfU17UWctktvqyPDpFn8
[5]
Abouhaswa, A.S., Rammah, Y.S. and Turky, G.M. (2020) Characterization of Zinc Lead-Borate Glasses Doped with Fe3+ Ions: Optical, Dielectric, and Ac-Conductivity Investigations. Journal of Materials Science: Materials in Electronics, 31, 17044- 17054. https://doi.org/10.1007/s10854-020-04262-1
[6]
Aliyu, A.M. and Ahmed, N.E. (2019) Structure and Physical Properties of 30MgSO4-(70-x) P2O5-xSm2O3 Glasses. EDUCATUM Journal of Science, Mathematics and Technology, 6, 22-34. https://doi.org/10.37134/ejsmt.vol6.2.3.2019
[7]
Lapa, A., Cresswell, M., Campbell, I., Jackson, P., Goldmann, W.H., Detsch, R. and Boccaccini, A.R. (2020) Gallium- and Cerium-Doped Phosphate Glasses with Antibacterial Properties for Medical Applications. Advanced Engineering Materials, 22, Article ID: 1901577. https://doi.org/10.1002/adem.201901577
[8]
Sekhar, A.V., Pavic, L., Mogus-Milankovic, A., Kumar, V.R., Reddy, A.S.S., Raju, G.N. and Veeraiah, N. (2020) Dielectric Dispersion and Impedance Spectroscopy of NiO Doped Li2SO4-MgO-P2O5 Glass System. Journal of Alloys and Compounds, 824, Article ID: 153907. https://doi.org/10.1016/j.jallcom.2020.153907
[9]
Huerta, E.F., Soriano-Romero, O., Meza-Rocha, A.N., Bordignon, S., Speghini, A. and Caldino, U. (2020) Lithium-Aluminum-Zinc Phosphate Glasses Activated with Sm3+, Sm3+/Eu3+ and Sm3+/Tb3+ for Reddish-Orange and White Light Generation. Journal of Alloys and Compounds, 846, Article ID: 156332.
https://doi.org/10.1016/j.jallcom.2020.156332
[10]
Jupri, S.A., Ghoshal, S.K., Yusof, N.N., Omar, M.F., Hamzah, K. and Krishnan, G. (2020) Influence of Surface Plasmon Resonance of Ag Nanoparticles on Photoluminescence of Ho3+ Ions in Magnesium-Zinc-Sulfophosphate Glass System. Optics & Laser Technology, 126, Article ID: 106134.
https://doi.org/10.1016/j.optlastec.2020.106134
[11]
Mondal, R., Biswas, D., Das, A.S., Ningthemcha, R.K.N., Deb, D., Bhattacharya, S., Kabi, S. (2020) Influence of Samarium Content on Structural, Thermal, Linear and Non-Linear Optical Properties of ZnO-TeO2-P2O5 Glasses. Materials Chemistry and Physics, 255, Article ID: 123561.
https://doi.org/10.1016/j.matchemphys.2020.123561
[12]
Ravangvong, S., Chanthima, N., Rajaramakrishna, R., Kim, H.J. and Kaewkhao, J. (2020) Effect of Sodium Oxide and Sodium Fluoride in Gadolinium Phosphate Glasses Doped with Eu2O3 Content. Journal of Luminescence, 219, Article ID: 116950. https://doi.org/10.1016/j.jlumin.2019.116950
[13]
Zhao, Y., Zhou, Y., Yang, J., Li, Y., Cheng, L., Wang, K., Sun, X., Sun, C. and Qin, Z. (2020) Optimized Structural and Mechanical Properties of Borophosphate Glass. Ceramics International, 46, 9025-9029.
https://doi.org/10.1016/j.ceramint.2019.12.150
[14]
Nagaraja, N., Sankarappa, T. and Prashant Kumar, M. (2008) Electrical Conductivity Studies in Single and Mixed Alkali Doped Cobalt-Borate Glasses. Journal of Non-Crystalline Solids, 354, 1503-1508.
https://doi.org/10.1016/j.jnoncrysol.2007.08.042
[15]
Song, J., Wu, D., Zhang, C., Ming, Q. and Imanzadeh, M. (2022) Investigation of Mixed Alkali Effect on the DC Electrical Conductivity, Structural, and Physical Properties of Phosphate Glasses Containing MnO2. Journal of Physics and Chemistry of Solids, 167, Article ID: 110759. https://doi.org/10.1016/j.jpcs.2022.110759
[16]
El-Desoky, M.M., Wally, N.K., Sheha, E. and Kamal, B.M. (2021) Impact of Sodium Oxide, Sulfide, and Fluoride-Doped Vanadium Phosphate Glasses on the Thermoelectric Power and Electrical Properties: Structure Analysis and Conduction Mechanism. Journal of Materials Science: Materials in Electronics, 32, 3699-3712.
https://doi.org/10.1007/s10854-020-05115-7
[17]
Ashwajeet, J.S., Sankarappa, T., Ramanna, R., Sujatha, T., Nagaraja, N. and Vijayakumar, B. (2015) Electrical Conduction in Borophosphate Glasses Doped With CoO and Li2O. Research Journal of Material Sciences, 3, 1-6.
https://www.researchgate.net/profile/Dr-J-S/publication/290482639_Electrical_Conduction_in_Borophosphate_Glasses_Doped_with_CoO_and_Li2O/links/5d1ee735299bf1547c98b3cb/Electrical-Conduction-in-Borophosphate-Glasses-Doped-with-CoO-and-Li2O.pdf
[18]
Sega, K., Kuroda, Y. and Sega, K. (1998) D.C. Conductivity of V2O5-MnO-TeO2 Glasses. Journal of Materials Science, 33, 1303-1308.
https://doi.org/10.1023/A:1004302431797
[19]
Mott, N.F. (1968) Conduction in Glasses Containing Transition Metal Ions. Journal of Non-Crystalline Solids, 1, 1-17. https://doi.org/10.1016/0022-3093(68)90002-1
[20]
Kumar, B.V., Sankarappa, T., Kumar, M.P. and Kumar, S. (2009) Electronic Transport Properties of Mixed Transition Metal Ions Doped Borophosphate Glasses. Journal of Non-Crystalline Solids, 355, 229-234.
https://doi.org/10.1016/j.jnoncrysol.2008.11.018
[21]
Prashant Kumar, M. and Sankarappa, T. (2008) DC Conductivity in Some Alkali Doped Vanadotellurite Glasses. Solid State Ionics, 178, 1719-1724.
https://doi.org/10.1016/j.ssi.2007.11.003
[22]
Devidas, G.B., Sankarappa, T., Chougule, B.K. and Prasad, G. (2007) DC Conductivity in Single and Mixed Alkali Vanadophosphate Glasses. Journal of Non-Crystalline Solids, 353, 426-434. https://doi.org/10.1016/j.jnoncrysol.2006.12.011
[23]
Greaves, G.N. and Ngai, K.L. (1995) Reconciling Ionic-Transport Properties with Atomic Structure in Oxide Glasses. Physical Review B, 52, 6358-6380.
https://doi.org/10.1103/PhysRevB.52.6358
[24]
Rao, P.V., Raju, G.N., Prasad, P.S., Laxmikanth, C. and Veeraiah, N. (2016) Transport and Spectroscopic Properties of Nickel Ions in ZnO-B2O3-P2O5 Glass System. Optik, 127, 2920-2923. https://doi.org/10.1016/j.ijleo.2015.12.056
[25]
Nagaraja, N., Sangamesh, J., Chandrashekar, Sankarappa, T. and Ashwajeeth, J.S. (2016) Mixed Conduction in Alkali and Transition Metal Ion Doped Borate Glasses. 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT), Chennai, 3-5 March 2016, 1035-1039.
https://doi.org/10.1109/ICEEOT.2016.7754843
[26]
Nikolic, J., Pavic, L., Santic, A., Mosner, P., Koudelka, L., Pajic, D. and Mogus- Milankovic, A. (2018) Novel Insights into Electrical Transport Mechanism in Ionic- Polaronic Glasses. Journal of the American Ceramic Society, 101, 1221-1235.
https://doi.org/10.1111/jace.15271
[27]
Isard, J.O. (1969) The Mixed Alkali Effect in Glass. Journal of Non-Crystalline Solids, 1, 235-261. https://doi.org/10.1016/0022-3093(69)90003-9
[28]
Vessal, B., Greaves, G.N., Marten, P.T., Chadwick, A.V., Mole, R. and Houde-Walter, S. (1992) Cation Microsegregation and Ionic Mobility in Mixed Alkali Glasses. Nature, 356, 504-506. https://doi.org/10.1038/356504a0
[29]
Hirashima, H., Nishii, K. and Yoshida, T. (1983) Electrical Conductivity of TiO2- V2O5-P205 Glasses. Journal of the American Ceramic Society, 66, 704-708.
https://doi.org/10.1111/j.1151-2916.1983.tb10533.x
[30]
Malge, A., Sankarappa, T., Sujatha, T., Devidas, G.B. and Azeem, P.A. (2020) Investigation of Physical and Spectroscopic Properties of WO3 Doped Zinc-Lithium- Dysprosium Borotellurite Glasses. Optical Materials, 109, Article ID: 110282.
https://doi.org/10.1016/j.optmat.2020.110282
[31]
Cullity, B.D. (1956) Elements of X-Ray Diffraction. Addison-Wesley Publishing Company, Boston.
http://117.239.25.194:7000/jspui/bitstream/123456789/954/1/PRELIMINARY%20AND%20CONTENT.pdf
[32]
Rajashekara, G., Sangamesh, J., Arunkumar, B., Nagaraja, N., and Kumar, M.P. (2018) Anomalous DC Electrical Conductivity in Mixed Transition Metal Ions Doped Borate Glasses. Journal of Non-Crystalline Solids, 481, 289-294.
https://doi.org/10.1016/j.jnoncrysol.2017.10.056
[33]
Greaves, G.N. (1973) Small Polaron Conduction in V2O5□P2O5 Glasses. Journal of Non-Crystalline Solids, 11, 427-446. https://doi.org/10.1016/0022-3093(73)90089-6
[34]
Dutta, B., Fahmy, N.A. and Pegg, I.L. (2006) Effect of Mixed Transition-Metal Ions in Glasses. Part III: The P2O5-V2O5-MnO System. Journal of Non-Crystalline Solids, 352, 2100-2108. https://doi.org/10.1016/j.jnoncrysol.2006.02.043
[35]
Mott, N.F. (1969) Conduction in Non-Crystalline Materials. The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics, 19, 835-852.
https://doi.org/10.1080/14786436908216338
[36]
Mott, N. and Davis, E. (2012) Electronic Processes in Non-Crystalline Materials. Oxford University Press, Oxford.
https://books.google.com/books?hl=en&lr=&id=Pl1b_yhKH-YC&oi=fnd&pg=PP1&dq=N.+Mott+and+E.+Davis,+Electronic+processes+in+non-crystalline+materials.+2012&ots=d7xSbyBZXd&sig=3bXFSLTdenMPwXUMyB6OLIoVxxk
[37]
Austin, I.G. and Mott, N.F. (1969) Polarons in Crystalline and Non-Crystalline Materials. Advances in Physics, 18, 41-102.
https://doi.org/10.1080/00018736900101267
[38]
Salman, F.E. Shash, N., El-Haded, A.H. and El-Mansy, M.K. (2002) Electrical Conduction and Dielectric Properties of Vanadium Phosphate Glasses Doped with Lithium. Journal of Physics and Chemistry of Solids, 63, 1957-1966.
https://doi.org/10.1016/S0022-3697(02)00164-6
[39]
El-Desoky, M.M. (2003) DC Conductivity and Hopping Mechanism in V2O5-B2O3- BaO Glasses. Physica Status Solidi A, 195, 422-428.
https://doi.org/10.1002/pssa.200305944
[40]
Sujatha, T., Sankarappa, T., Ashwajeet, J.S., Ramanna, R. and Hanagodimath, S.M. (2015) Electrical Conduction in V2O5 Doped Borophosphate Glasses. Journal of Advanced Chemical Sciences, 1, 157-159.
[41]
Souri, D., Azizpour, P. and Zaliani, H. (2014) Electrical Conductivity of V2O5-TeO2- Sb Glasses at Low Temperatures. Journal of Electronic Materials, 43, 3672-3680.
https://doi.org/10.1007/s11664-014-3288-x
[42]
El-Desoky, M.M. (2005) Characterization and Transport Properties of V2O5-Fe2O3- TeO2 Glasses. Journal of Non-Crystalline Solids, 351, 3139-3146.
https://doi.org/10.1016/j.jnoncrysol.2005.08.004
[43]
Chakraborty, S., Sadhukhan, M., Modak, D.K. and Chaudhuri, B.K. (1995) Non- Adiabatic Polaron Hopping Conduction in Semiconducting V2O5-Bi2O3 Oxide Glasses Doped with BaTiO3. Journal of Materials Science, 30, 5139-5145.
https://doi.org/10.1007/BF00356061
[44]
Sakata, H., Sega, K. and Chaudhuri, B.K. (1999) Multiphonon Tunneling Conduction in Vanadium-Cobalt-Tellurite Glasses. Physical Review B, 60, 3230-3236.
https://doi.org/10.1103/PhysRevB.60.3230
[45]
Emin, D. and Holstein, T. (1969) Studies of Small-Polaron Motion IV. Adiabatic Theory of the Hall Effect. Annals of Physics, 53, 439-520.
https://doi.org/10.1016/0003-4916(69)90034-7
[46]
Ashwajeet, J.S., Sankarappa, T., Sujatha, T. and Ramanna, R. (2018) Thermal and Electrical Properties of (B2O3-TeO2-Li2O-CoO) Glasses. Journal of Non-Crystalline Solids, 486, 52-57. https://doi.org/10.1016/j.jnoncrysol.2018.02.010
[47]
Ghosh, A. and Chaudhuri, B.K. (1986) DC Conductivity of V2O5-Bi2O3 Glasses. Journal of Non-Crystalline Solids, 83, 151-161.
https://doi.org/10.1016/0022-3093(86)90065-7
[48]
Abrahams, E., Anderson, P.W., Licciardello, D.C. and Ramakrishnan, T.V. (1979) Scaling Theory of Localization: Absence of Quantum Diffusion in Two Dimensions. Physical Review Letters, 42, 673-676. https://doi.org/10.1103/PhysRevLett.42.673
[49]
Anderson, P.W. (1958) Absence of Diffusion in Certain Random Lattices. Physical Review, 109, 1492-1505. https://doi.org/10.1103/PhysRev.109.1492
[50]
Al-Assiri, M.S., Salem, S.A. and El-Desoky, M.M. (2006) Effect of Iron Doping on the Characterization and Transport Properties of Calcium Phosphate Glassy Semiconductors. Journal of Physics and Chemistry of Solids, 67, 1873-1881.
https://doi.org/10.1016/j.jpcs.2006.04.015