全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Fabrication of Polarization Control Devices Using Metal Grating Structures

DOI: 10.4236/opj.2022.129015, PP. 201-213

Keywords: Surface Plasmon, Metal Grating, Polarization Control, Plasmonic Metasurface

Full-Text   Cite this paper   Add to My Lib

Abstract:

A polarization control device was developed using a plasmonic metasurface with the aim of achieving the desired polarization state. In this study, the Ag metal grating structure was fabricated as a plasmonic metasurface by electron beam lithography and a lift-off process. The phase difference of the fabricated sample was 21.0°. This value is almost consistent with the simulation (24.0°). Then, the transmission and phase difference is dependent on the structural parameter. Because of the propagation of surface plasmon polariton at the interface between Ag and SiO2 or Ag and air, it is believed that the transmittance and the phase difference for TM polarized light can be controlled by the structural parameters. By plotting on the Poincaré sphere after calculating the S-parameter by simulation, it is clear that the arbitrary polarization status can be controlled by the structural parameter.

References

[1]  Hertz, H. (1893) Electric Waves. Macmillan and Company, Ltd., New York, 177.
[2]  Bird, G.R. and Parrish Jr., M. (1960) The Wire Grid as a Near-Infrared Polarizer. Journal of the Optical Society of America, 50, 886-891.
https://doi.org/10.1364/JOSA.50.000886
[3]  Hass, M. and O’Hara, M. (1965) Sheet Infrared Transmission Polarizers. Applied Optics, 4, 1027-1031.
https://doi.org/10.1364/AO.4.001027
[4]  Auton, J.P. (1967) Infrared Transmission Polarizers by Photolithography. Applied Optics, 6, 1023-1027.
https://doi.org/10.1364/AO.6.001023
[5]  Tamada, H., Doumuki, T., Yamaguchi, T. and Matsumoto, S. (1997) Al Wire-Grid Polarizer Using the S-Polarization Resonance Effect at the 0.8-μm-Wavelength Band. Optics Letters, 22, 419-421.
https://doi.org/10.1364/OL.22.000419
[6]  Schlachter, F., Barnett, J., Plachetka, U., Nowak, C., Messerscmidt, M., Thesen, M. and Kurz, H. (2016) UV-NIL Based Nanostructuring of Aluminum Using a Novel Organic Imprint Resist Demonstrated for 100 nm Half-Pitch Wire Grid Polarizer. Microelectronic Engineering, 155, 118-121.
https://doi.org/10.1016/j.mee.2016.03.046
[7]  Yu, Z., Deshpande, P., Wu, W., Wang, J. and Chou, S.Y. (2000) Reflective Polarizer Based on a Stacked Double-Layer Subwavelength Metal Grating Structure Fabricated Using Nanoimprint Lithography. Applied Physics Letters, 77, 927-929
https://doi.org/10.1063/1.1288674
[8]  Yu, X.J. and Kwok, H.S. (2003) Optical Wire-Grid Polarizers at Oblique Angles of Incidence. Journal of Applied Physics, 93, 4407-4412.
https://doi.org/10.1063/1.1559937
[9]  Xu, M.H., Urbach, P., de Boer, D.K.G. and Cornelissen, H.J. (2005) Wire-Grid Diffraction Gratings Used as Polarizing Beam Splitter for Visible Light and Applied in Liquid Crystal on Silicon. Optics Express, 13, 2303-2305.
https://doi.org/10.1364/OPEX.13.002303
[10]  Qin, L., Yang, J., Wang, C., Shen, C., Wang, Y., Tang, J. and Liu, J. (2019) Preparation and Measurement of Subwavelength Bilayer Metal Wire Grid Polarizers on Flexible Plastic Substrates. Optics Communications, 434, 118-123.
https://doi.org/10.1016/j.optcom.2018.10.060
[11]  Wang, J.J., Walters, F., Liu, X., Sciortino, P. and Deng, X. (2007) High-Performance, Large Area, Deep Ultraviolet to Infrared Polarizers Based on 40 nm Line/78 nm Space Nanowire Grids. Applied Physics Letters, 90, Article No. 061104.
https://doi.org/10.1063/1.2437731
[12]  Ma, Y., Sun, N., Zhang, R., Guo, L., She, Y., Zheng, J. and Ye, Z. (2014) Integrated Color Filter and Polarizer Based on Two-Dimensional Superimposed Nanowire Arrays. Journal of Applied Physics, 116, Article No. 044314.
https://doi.org/10.1063/1.4891804
[13]  Stenkamp, B., Abraham, M., Ehrfeld, W., Knapek, E., Hintemaier, M., Gale, M.T. and Morf, R. (2014) Nanofabrication Technologies and Device Integration. Proceedings of SPIE—The International Society for Optical Engineering, 2213, 288-296.
[14]  Ekinci, Y., Solak, H.H., David, C. and Sigg, H. (2006) Bilayer Al Wire-Grids as Broadband and High-Performance Polarizers. Optics Express, 14, 2323-2334.
https://doi.org/10.1364/OE.14.002323
[15]  Ye, Z., Peng, Y., Zhai, T., Zhou, Y. and Liu, D. (2011) Surface Plasmon-Mediated Transmission in Double-Layer Metallic Grating Polarizers. Journal of the Optical Society of America B, 28, 502-507.
https://doi.org/10.1364/JOSAB.28.000502
[16]  Ye, Z., Zheng, J., Sun, S., Chen, S. and Liu, D. (2013) Compact Color Filter and Polarizer of Bilayer Metallic Nanowire Grating Based on Surface Plasmon Resonances. Plasmonics, 8, 555-559.
https://doi.org/10.1007/s11468-012-9433-6
[17]  Wang, J., Shen, Z. and Wu, W. (2017) Broadband and High-Efficiency Circular Polarizer Based on Planar-Helix Chiral Metamaterials. Applied Physics Letters, 111, Article No. 113503.
https://doi.org/10.1063/1.4990142
[18]  Zhao, Y., Belkin, M.A. and Aliù, A. (2012) Twisted Optical Metamaterials for Planarized Ultrathin Broadband Circular Polarizers. Nature Communications, 3, Article No. 870.
https://doi.org/10.1038/ncomms1877
[19]  Hsu, S.-Y., Lee, K.-L., Lin, E.-H., Lee, M.-C. and Wei, P.-K. (2009) Giant Birefringence Induced by Plasmonic Nanoslit Arrays. Applied Physics Letters, 95, Article No. 013105.
https://doi.org/10.1063/1.3167772
[20]  Ishi, M., Iwami, K. and Umeda, N. (2015) An Au Nanofin Array for High Efficiency Plasmonic Optical Retarders at Visible Wavelengths. Applied Physics Letters, 106, Article No. 021115.
https://doi.org/10.1063/1.4905369
[21]  Ishi, M., Iwami, K. and Umeda, N. (2016) Highly-Efficient and Angle-Independent Zero-Order Half Waveplate at Broad Visible Wavelength Based on Au Nanofin Array Embedded in Dielectric. Optics Express, 24, 7966-7976.
https://doi.org/10.1364/OE.24.007966
[22]  Djalalian-Assl, A., Cadusch, J.J., Teo, Z.Q., Davis, T.J. and Roberts, A. (2015) Surface Plasmon Wave Plates. Applied Physics Letters, 106, Article No. 041104.
https://doi.org/10.1063/1.4906596
[23]  Motogaito, A., Nakajima, T., Miyake, H. and Hiramatsu, K. (2017) Excitation Mechanism of Surface Plasmon Polaritons in a Double-Layer Wire Grid Structure. Applied Physics A, 123, Article No. 729.
https://doi.org/10.1007/s00339-017-1367-6
[24]  Motogaito, A., Morishita, Y., Miyake, H. and Hiramatsu, K. (2015) Extraordinary Optical Transmission Exhibited by Surface Plasmon Polaritons in a Double-Layer Wire Grid Polarizer. Plasmonics, 10, 1657-1662.
https://doi.org/10.1007/s11468-015-9980-8
[25]  Motogaito, A., Mito, S., Miyake, H. and Hiramastsu, K. (2016) Detecting High-Refractive-Index Media Using Surface Plasmon Sensor with One-Dimensional Metal Diffraction Grating. Optics and Photonics Journal, 6, 164-170.
https://doi.org/10.4236/opj.2016.67018
[26]  Motogaito, A. and Ito, Y. (2019) Excitation Mechanism of Surface Plasmon Polaritons for Surface Plasmon Sensor with 1D Metal Grating Structure for High Refractive Index Medium. Photonic Sensors, 9, 11-18.
https://doi.org/10.1007/s13320-018-0515-8
[27]  Motogaito, A., Tanaka, R. and Hiramatsu, K. (2021) Fabrication of Perfect Plasmonic Absorbers for Blue and Near-Ultraviolet Lights Using Double-Layer Wire-Grid Structures. Journal of the European Optical Society-Rapid Publications, 17, Article No. 6.
https://doi.org/10.1186/s41476-021-00151-0
[28]  Vansteenkiste, N., Vignolo, P. and Aspect, A. (1993) Optical Reversibility Theorems for Polarization: Application to Remote Control of Polarization. Journal of the Optical Society of America A, 10, 2240-2245.
https://doi.org/10.1364/JOSAA.10.002240
[29]  Jullien, A., Albert, O., Chériaux, G., Etchepare, J., Kourtev, S., Minkovski, N. and Saltiel, S.M. (2005) Nonlinear Polarization Rotation of Elliptical Light in Cubic Crystals, with Application to Cross-Polarized Wave Generation. Journal of the Optical Society of America B, 22, 2635-2641.
https://doi.org/10.1364/JOSAB.22.002635
[30]  Gao, C., Wang, B., Fu, C., Fang, J., Wen, K., Meng, Z., Nie, Z., Xing, X., Chen, L., Lei, L. and Zhou, J. (2020) Polarization-Controlled Grating Polarizer under Second Bragg Incidence with Silver Deposited in Groove. Optics Communications, 459, Article No. 125063.
https://doi.org/10.1016/j.optcom.2019.125063
[31]  Wu, P.C., Zhu, W., Shen, Z.X., Chong, P.H.J., Ser, W., Tsai, D.P. and Liu, A.-Q. (2017) Broadband Wide-Angle Multifunctional Polarization Converter via Liquid-Metal-Based Metasurface. Advanced Optical Materials, 5, Article No. 1600938.
https://doi.org/10.1002/adom.201600938
[32]  Mueller, J.P.B., Rubin, N.A., Devlin, R.C., Groever, B. and Capasso, F. (2017) Metasurface Polarization Optics: Independent Phase Control of Arbitrary Orthogonal States of Polarization. Physical Review Letters, 118, Article No. 113901.
https://doi.org/10.1103/PhysRevLett.118.113901
[33]  Arbabi, A., Horie, Y., Bagheri, M. and Faraon, A. (2015) Dielectric Metasurfaces for Complete Control of Phase and Polarization with Subwavelength Spatial Resolution and High Transmission. Nature Nanotechnology, 10, 937-943.
https://doi.org/10.1038/nnano.2015.186
[34]  Lovera, P., Jones, D., Corbett, B. and O’Riordan, A. (2012) Polarization Tunable Transmission through Plasmonic Arrays of Elliptical Nanopores. Optics Express, 20, 25325-25332.
https://doi.org/10.1364/OE.20.025325
[35]  Yan, T., Ma, Q. and Cui, T. (2020) Circular Polarization Hologram Realized by Pancharatnam-Berry Phase in Microwave Frequency. Journal of Computer and Communications, 8, 134-141.
https://doi.org/10.4236/jcc.2020.812013
[36]  Juhl, M., Mendoza, C., Mueller, J.P.B., Capasso, F. and Leosson, K. (2017) Performance Characteristics of 4-Port In-Plane and Out-of-Plane In-Line Metasurface Polarimeters. Optics Express, 25, 28697-28709.
https://doi.org/10.1364/OE.25.028697
[37]  Mueller, J.P., Lesson, B.K. and Capasso, F. (2016) Ultracompact Metasurface In-Line Polarimeter. Optica, 3, 42-47.
https://doi.org/10.1364/OPTICA.3.000042
[38]  Jiao, S., Yu, W., Stoica, G. and Wang, L.V. (2003) Contrast Mechanisms in Polarization-Sensitive Mueller-Matrix Optical Coherence Tomography and Application in Burn Imaging. Applied Optics, 42, 5191-5197.
https://doi.org/10.1364/AO.42.005191
[39]  Giattina, S.D., Courtney, B.K., Herz, P.R., Harman, M., Shortkroff, S., Stamper, D.L., Liu, B., Fujimoto, J.G. and Berzinski, M.E. (2006) Assessment of Coronary Plaque Collagen with Polarization Sensitive Optical Coherence Tomography (PS-OCT). International Journal of Cardiology, 107, 400-409.
https://doi.org/10.1016/j.ijcard.2005.11.036
[40]  Torres, R., Kaempfe, T., Delaigue, M., Parriaux, O., Hönninger, C., Lopez, J., Kling, R. and Mottay, E. (2013) Influence of Laser Beam Polarization on Laser Micro-Machining of Molybdenum. Journal of Laser Micro/Nanoengineering, 8, 188-191.
https://doi.org/10.2961/jlmn.2013.03.0001
[41]  Ye, Y., Zhou, Y., Zhang, H. and Chen, L. (2011) Polarizing Color Filter Based on a Subwavelength Metal-Dielectric Grating. Applied Optics, 50, 1356-1363.
https://doi.org/10.1364/AO.50.001356
[42]  Amaya, J.S., González, C. and Bailon, K. (2021) Web Control System for Transcorneal Electric Stimulation Devices. Journal of Biomedical Science and Engineering, 14, 452-459.
https://doi.org/10.4236/jbise.2021.1412039

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133