全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

5G在城郊智慧农场多机协同作业中的组网研究
Research on 5G Networking in Multi Machine Cooperative Operation of Suburban Smart Farm

DOI: 10.12677/HJWC.2022.125005, PP. 35-41

Keywords: 智慧农业,多机协同,无线信号链路质量,无线宽带组网
Smart Agriculture
, Multi Machine Collaboration, Wireless Signal Strength, Wireless Broadband Networking

Full-Text   Cite this paper   Add to My Lib

Abstract:

对单台农机作业技术的研究逐渐趋向成熟,鲜有看到对多台农机联合作业通信技术的研究报道。多台农机作业过程中通过车载传感器不断地采集大量不同种类的数据(图像、视频等),5G能否满足这些数据对带宽、时延、速率等传输要求以实现机群协同作业是值得研究的科学问题。本文经过细致梳理国内外研究现状与动态分析,提出无线通信技术支撑多机协同作业是智慧农场的关键技术特征;当前4G、5G在农场中的覆盖范围与信号强度是否支撑多机协同作业值得研究。本文选取河南新乡国家级某农业科技园区作为实验基地,通过设计实验,测试参考信号接收功率和信号与干扰加噪声比指标,采用车载仪器与手持仪表对4G、5G信号覆盖范围与强度进行实际测量,并将测量数据绘图进行可视化展示与分析,为智慧农场多机协同作业如何采用4G、5G混合组网提供科学依据与指导。
The research on the operation technology of a single agricultural machine gradually tends to be mature, and few research reports on the communication technology of joint operation of multiple agricultural machines are seen. During the operation of multiple agricultural machines, a large number of different types of data (images, videos, etc.) are continuously collected by on-board sensors. Whether 5G can meet the transmission requirements of these data on bandwidth, time delay, speed, etc. to realize the cooperative operation of machine groups is a scientific problem worth studying. After carefully combing the research status and dynamic analysis at home and abroad, it is proposed that wireless communication technology supporting multi machine coopera-tive operation is the key technical feature of the smart farm; It is worth studying whether the cov-erage and signal strength of 4G and 5G in the farm support multi machine cooperative operation. In this paper, a national agricultural science and technology farm in Xinxiang, Henan province is se-lected as the experimental base. Through the design of experiments, the received power of refer-ence signals and the ratio of signal to interference and noise are tested. The coverage and intensity of 4G and 5G signals are measured by on-board instruments and hand-held instruments, and the measured data are plotted for visual display and analysis, so as to provide a scientific basis and guidance on how to use 4G and 5G hybrid networking.

References

[1]  罗锡文, 廖娟, 胡炼, 等. 我国智能农机的研究进展与无人农场的实践[J]. 华南农业大学学报, 2021, 42(6): 8-17.
[2]  赵春江, 李瑾, 冯献. 面向2035年智慧农业发展战略研究[J]. 中国工程科学, 2021, 23(4): 1-9.
[3]  李道亮, 李震. 无人农场系统分析与发展展望[J]. 农业机械学报, 2020, 51(7): 1-12.
[4]  黄季焜, 解伟, 盛誉, 王晓兵, 王金霞, 刘承芳, 侯玲玲. 全球农业发展趋势及2050年中国农业发展展望[J]. 中国工程科学, 2022, 24(1): 29-37.
[5]  杨涛, 李晓晓. 农机自动驾驶系统研究进展与行业竞争环境分析[J]. 中国农机化学报, 2021, 42(11): 222-231.
[6]  张闻宇, 张智刚, 罗锡文, 等. 收获机与运粮车纵向相对位置位速耦合协同控制方法与试验[J]. 农业工程学报, 2021, 37(9): 1-11.
[7]  杨洋, 查家翼, 李延凯, 王韦韦, 许良元, 陈黎卿. 拖拉机机组无人作业协同控制系统设计与试验[J/OL]. 农业机械学报, 2022, 53(2): 421-429. http://kns.cnki.net, 2022-03-10.
[8]  钟银, 薛梦琦, 袁洪良. 智能农机 GNSS/INS 组合导航系统设计[J]. 农业工程学报, 2021, 37(9): 40-46.
[9]  解彬彬, 刘继展, 何蒙, 等. 改进AOA 模式的大田农机无人驾驶导航参数检测系统设计[J]. 农业工程学报, 2021, 37(14): 40-51.
[10]  Ar, A., Nn, B., Ho, B., et al. (2020) A Review of Autonomous Agricultural Vehicle (The Experience of Hokkaido University). Journal of Terramechanics, 91, 155-183.
https://doi.org/10.1016/j.jterra.2020.06.006
[11]  王辉, 王桂民, 罗锡文, 张智刚, 高阳, 何杰, 岳斌斌. 基于预瞄追踪模型的农机导航路径跟踪控制方法[J]. 农业工程学报, 2019, 35(4): 11-19.
[12]  何杰, 朱金光, 罗锡文, 等. 电动方向盘插秧机转向控制系统设计[J]. 农业工程学报, 2019, 35(6): 10-17.
[13]  罗锡文, 张智刚, 赵祚喜, 等. 东方红X-804拖拉机的DGPS自动导航控制系统[J]. 农业工程学报, 2009, 25(11): 139-145.
[14]  曾宏伟, 雷军波, 陶建峰, 等. 低对比度条件下联合收割机导航线提取方法[J]. 农业工程学报, 2020, 36(4): 18-25.
[15]  黄培奎, 张智刚, 罗锡文, 等. 田间作业车辆外部加速度辨识与姿态测量系统研制[J]. 农业工程学报, 2019, 35(3): 9-15.
[16]  黄凰, 陈燕燕, 朱明, 等. 基于模糊隶属度的多站点多机协同即时响应调度系统[J]. 农业工程学报, 2021, 37(21): 71-79.
[17]  陈学庚, 温浩军, 张伟荣, 潘佛雏, 赵岩. 农业机械与信息技术融合发展现状与方向[J]. 智慧农业(中英文), 2020, 2(4): 1-16.
[18]  Kenney, J.B. (2011) Dedicated Short-Range Communications (DSRC) Standards in the United Stated. Proceedings of the IEEE, 99, 1162-1182.
https://doi.org/10.1109/JPROC.2011.2132790
[19]  Wang, J., Yan, Y., Yang, X., et al. (2010) Situations and Tendency of Intelligent Transportation System in Europe. International Conference on Opto-electronics and Image Processing IEEE, Haiko, 11-12 November 2010, 396-401.
https://doi.org/10.1109/ICOIP.2010.54
[20]  Eichler, S. (2007) Performance Evaluation of the IEEE 802.11p WAVE Communication Standard. 2007 IEEE 66th Vehicular Technology Conference, Baltimore, 30 September-3 October 2007, 2199-2203.
https://doi.org/10.1109/VETECF.2007.461
[21]  Bilstrup, K., Uhlemann, E., Strom, E.G., et al. (2008) Evalu-ation of the IEEE802.11p MAC Method for Vehicle-to-Vehicle Communication. In: Vehicle Technology Conference, IEEE, Piscataway, 1-5.
https://doi.org/10.1109/VETECF.2008.446
[22]  Murray, T., Cojocari, M., et al. (2008) Measuring the Per-formance of IEEE 802.11p Using ns-2 Simulator for Vehicular Networks. IEEE International Conference on Elec-tro/Information Technology, Ames, 18-20 May 2008, 498-503.
https://doi.org/10.1109/EIT.2008.4554354
[23]  张漫, 季宇寒, 李世超, 等. 农业机械导航技术研究进展[J]. 农业机械学报, 2020, 51(4): 1-18.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413