全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Simple Over-Oxidized Molecularly Imprinted Polypyrrole for the Sensitive Detection of Dopamine in Human Serum

DOI: 10.4236/jst.2022.123003, PP. 33-44

Keywords: Dopamine, Molecularly Imprinted Polymers, Over-Oxidized Polypyrrole, Square Wave Voltammetry

Full-Text   Cite this paper   Add to My Lib

Abstract:

A simple electrochemical sensor for dopamine detection, is based on molecularly imprinted and electropolymerized over-oxidized polypyrrole (OPPy). The MIP-based electrode is obtained by electrocopolymerization of pyrrole (0.1 M) in the presence of the template molecular (dopamine, DA) (10-3 M). The square wave voltammetry (SWV) is used for the detection of dopamine in buffer solution. The current peak obtained at the MIP electrode was proportional to the logarithm of the DA concentration in the range of 10-11 to 5 × 10-8 M with a detection limit of 10-11 M. The proposed sensor was used for the detection of DA in spiked blood serum, satisfactory results were obtained.

References

[1]  Eom, G., Oh, C., Moon, J., Kim, H., Kim, M.K., Kim, K., Seo, J.-W., Kang, T. and Lee, H.J. (2019) Highly Sensitive and Selective Detection of Dopamine Using Overoxidized Polypyrrole/Sodium Dodecyl Sulfate-Modified Carbon Nanotube Electrodes. Journal of Electroanalytical Chemistry, 848, Article ID: 113295.
https://doi.org/10.1016/j.jelechem.2019.113295
[2]  Do, P.T., Do, P.Q., Nguyen, H.B., Nguyen, V.C., Tran, D.L., Le, T.H., Nguyen L.H., Pham, H.V., Nguyen, T.L. and Tran, Q.H. (2014) A Highly Sensitive Electrode Modified with Graphene, Gold Nanoparticles, and Molecularly Imprinted Over-Oxidized Polypyrrole for Electrochemical Determination of Dopamine. Journal of Molecular Liquids, 198, 307-312.
https://doi.org/10.1016/j.molliq.2014.07.029
[3]  Jackowska, K. and Krysinski, P. (2013) New Trends in the Electrochemical Sensing of Dopamine. Analytical and Bioanalytical Chemistry, 405, 3753-3771.
https://doi.org/10.1007/s00216-012-6578-2
[4]  Uppachai, P., Srijaranai, S., Poosittisak, S., Isa, I.M. and Mukdasai, S. (2020) Supramolecular Electrochemical Sensor for Dopamine Detection Based on Self-Assembled Mixed Surfactants on Gold Nanoparticles Deposited Graphene Oxide. Molecules, 25, Article No. 2528.
https://doi.org/10.3390/molecules25112528
[5]  Maouche, N., Ktari, N., Bakas, I., Fourati, N., Zerrouki, C., Seydou, M., Maurel, F. and Chehimi, M.M. (2015) A Surface Acoustic Wave Sensor Functionalized with a Polypyrrole Molecularly Imprinted Polymer for Selective Dopamine Detection. Journal of Molecular Recognition, 28, 667-678.
https://doi.org/10.1002/jmr.2482
[6]  Sağlam, Ş., Arman, A., Üzer, A., Ustamehmetoğlu, B., Sezer, E. and Apak, R. (2020) Selective Electrochemical Determination of Dopamine with Molecularly Imprinted Poly(Carbazole-co-Aniline) Electrode Decorated with Gold Nanoparticles. Electroanalysis, 32, 964-970.
https://doi.org/10.1002/elan.201900646
[7]  Qian, T., Yu, C., Zhou, X., Wu, S. and Shen, J. (2014) Au Nanoparticles Decorated Polypyrrole/Reduced Graphene Oxide Hybrid Sheets for Ultrasensitive Dopamine Detection. Sensors and Actuators B: Chemical, 193, 759-763.
https://doi.org/10.1016/j.snb.2013.12.055
[8]  Wang, Y., Tang, J. and Xiang, L. (2021) Detection of Dopamine by a Minimized Electrochemical Sensor Using a Graphene Oxide Molecularly Imprinted Polymer Modified Micropipette Tip Shaped Graphite Electrode. Journal of Chemical Research, 45, 702-707.
https://doi.org/10.1177/1747519821989957
[9]  Hormozi Nezhad, M.R., Tashkhourian, J. and Khodaveisi, J. (2010) Sensitive Spectrophotometric Detection of Dopamine, Levodopa and Adrenaline Using Surface Plasmon Resonance Band of Silver Nanoparticles. Journal of the Iranian Chemical Society, 7, S83-S91.
https://doi.org/10.1007/BF03246187
[10]  Wen, J., Zhou, L., Jin, L., Cao, X. and Ye, B.C. (2009) Overoxidized Polypyrrole/ Multi-Walled Carbon Nanotubes Composite Modified Electrode for in Vivo Liquid Chromatography-Electrochemical Detection of Dopamine. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 877, 1793-1798.
https://doi.org/10.1016/j.jchromb.2009.04.014
[11]  Zhang, Y., Li, B. and Chen, X. (2010) Simple and Sensitive Detection of Dopamine in the Presence of High Concentration of Ascorbic Acid Using Gold Nanoparticles as Colorimetric Probes. Microchimica Acta, 168, 107-113.
https://doi.org/10.1007/s00604-009-0269-5
[12]  Shou, M., Ferrario, C.R., Schultz, K.N., Robinson, T.E. and Kennedy, R.T. (2006) Monitoring Dopamine in Vivo by Microdialysis Sampling and On-Line CE-Laser-Induced Fluorescence. Analytical Chemistry, 78, 6717-6725.
https://doi.org/10.1021/ac0608218
[13]  Zhou, K., Shen, D., Li, X., Chen, Y., Hou, L., Zhang, Y. and Sha, J. (2020) Molybdenum Oxide-Based Metal-Organic Framework/Polypyrrole Nanocomposites for Enhancing Electrochemical Detection of Dopamine. Talanta, 209, Article ID: 120507.
https://doi.org/10.1016/j.talanta.2019.120507
[14]  Shen, M. and Kan, X. (2021) Aptamer and Molecularly Imprinted Polymer: Synergistic Recognition and Sensing of Dopamine. Electrochimica Acta, 367, Article ID: 137433.
https://doi.org/10.1016/j.electacta.2020.137433
[15]  Siddeeg, S.M. (2020) Electrochemical Detection of Neurotransmitter Dopamine: A Review. International Journal of Electrochemical Science, 15, 599-612.
https://doi.org/10.20964/2020.01.61
[16]  Ben Ali Hassine, C., Kahri, H. and Barhoumi, H. (2020) Enhancing Dopamine Detection Using Glassy Carbon Electrode Modified with Graphene Oxide, Nickel and Gold Nanoparticles. Journal of The Electrochemical Society, 167, Article ID: 027516.
https://doi.org/10.1149/1945-7111/ab6971
[17]  Li, J., Zhao, J. and Wei, X. (2009) A Sensitive and Selective Sensor for Dopamine Determination Based on a Molecularly Imprinted Electropolymer of o-Aminophenol. Sensors and Actuators B: Chemical, 140, 663-669.
https://doi.org/10.1016/j.snb.2009.04.067
[18]  Gong, Q.J., Han, H.X., Wang, Y.D., Yao, C.Z., Yang, H.Y. and Qiao, J.L. (2020) An Electrochemical Sensor for Dopamine Detection Using Poly-Tryptophan Composited Graphene on Glassy Carbon as the Electrode. New Carbon Materials, 35, 34-41.
https://doi.org/10.1016/S1872-5805(20)60473-5
[19]  Sheng, Z.H., Zheng, X.Q., Xu, J.Y., Bao, W.J., Wang, F.B. and Xia, X.H. (2012) Electrochemical Sensor Based on Nitrogen Doped Graphene: Simultaneous Determination of Ascorbic Acid, Dopamine and Uric Acid. Biosensors and Bioelectronics, 34, 125-131.
https://doi.org/10.1016/j.bios.2012.01.030
[20]  Teng, Y., Liu, F. and Kan, X. (2017) Voltammetric Dopamine Sensor Based on Three-Dimensional Electrosynthesized Molecularly Imprinted Polymers and Polypyrrole Nanowires. Microchimica Acta, 184, 2515-2522.
https://doi.org/10.1007/s00604-017-2243-y
[21]  Tsai, T.-C., Han, H.-Z., Cheng, C.-C., Chen, L.-C., Chang, H.-C. and Chen, J.-J.J. (2012) Modification of Platinum Microelectrode with Molecularly Imprinted Over-Oxidized Polypyrrole for Dopamine Measurement in Rat Striatum. Sensors and Actuators B: Chemical, 171-172, 93-101.
https://doi.org/10.1016/j.snb.2011.07.052
[22]  Zang, Y.-J., Nie, J., He, B., Yin, W., Zheng, J., Hou, C.-J., Fa, H.-B., et al. (2020) Fabrication of S-MoSe2/NSG/Au/MIPs Imprinted Composites for Electrochemical Detection of Dopamine Based on Synergistic Effect. Microchemical Journal, 156, Article ID: 104845.
https://doi.org/10.1016/j.microc.2020.104845
[23]  Qian, T., Yu, C., Zhou, X., Ma, P., Wu, S., Xu, L. and Shen, J. (2014) Ultrasensitive Dopamine Sensor Based on Novel Molecularly Imprinted Polypyrrole Coated Carbon Nanotubes. Biosensors and Bioelectronics, 58, 237-241.
https://doi.org/10.1016/j.bios.2014.02.081
[24]  Yang, Z., Liu, X., Wu, Y. and Zhang, C. (2015) Modification of Carbon Aerogel Electrode with Molecularly Imprinted Polypyrrole for Electrochemical Determination of Dopamine. Sensors and Actuators B: Chemical, 212, 457-463.
https://doi.org/10.1016/j.snb.2015.02.057
[25]  Fabregat, G., Córdova-Mateo, E., Armelin, E., Bertran, O. and Alemán, C. (2011) Ultrathin Films of Polypyrrole Derivatives for Dopamine Detection. Journal of Physical Chemistry C, 115, 14933-14941.
https://doi.org/10.1021/jp203898r
[26]  Oliveira, S.M., Luzardo, J.M., Silva, L.A., Aguiar, D.C., Senna, C.A., Verdan, R., Araujo, J.R., et al. (2020) High-Performance Electrochemical Sensor Based on Molecularly Imprinted Polypyrrole-Graphene Modified Glassy Carbon Electrode. Thin Solid Films, 699, Article ID: 137875.
https://doi.org/10.1016/j.tsf.2020.137875
[27]  Maouche, N., Guergouri, M., Gam-Derouich, S., Jouini, M., Nessark, B. and Chehimi, M.M. (2012) Molecularly Imprinted Polypyrrole Films: Some Key Parameters for Electrochemical Picomolar Detection of Dopamine. Journal of Electroanalytical Chemistry, 685, 21-27.
https://doi.org/10.1016/j.jelechem.2012.08.020
[28]  Essousi, H., Barhoumi, H., Karastogianni, S. and Girousi, S.T. (2020) An Electrochemical Sensor Based on Reduced Graphene Oxide, Gold Nanoparticles and Molecular Imprinted Over-Oxidized Polypyrrole for Amoxicillin Determination. Electroanalysis, 32, 1546-1558.
https://doi.org/10.1002/elan.201900751
[29]  Ma, X., Gao, F., Dai, R., Liu, G., Zhang, Y., Lu, L. and Yu, Y. (2020) Novel Electrochemical Sensing Platform Based on a Molecularly Imprinted Polymer-Decorated 3D-Multi-Walled Carbon Nanotube Intercalated Graphene Aerogel for Selective and Sensitive Detection of Dopamine. Analytical Methods, 12, 1845-1851.
https://doi.org/10.1039/D0AY00033G
[30]  Song, W., Chen, Y., Xu, J., Yang, X.R. and Tian, D.B. (2010) Dopamine Sensor Based on Molecularly Imprinted Electrosynthesized Polymers. Journal of Solid State Electrochemistry, 14, 1909-1914.
https://doi.org/10.1007/s10008-010-1025-9
[31]  Ermiş, N. and Tinkiliç, N. (2021) Development of an Electrochemical Sensor for Selective Determination of Dopamine Based on Molecularly Imprinted Poly (p-Aminothiophenol) Polymeric Film. Electroanalysis, 33, 1491-1501.
https://doi.org/10.1002/elan.202060556
[32]  Kan, X., Zhou, H., Li, C., Zhu, A., Xing, Z. and Zhao, Z. (2012) Imprinted Electrochemical Sensor for Dopamine Recognition and Determination Based on a Carbon Nanotube/Polypyrrole Film. Electrochimica Acta, 63, 69-75.
https://doi.org/10.1016/j.electacta.2011.12.086

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413