全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Geomaterials  2023 

Integrated Structure and Mineralization Study Using Aero-Magnetic, Aero-Spectrometric and Remote Sensing Data at Esh El-Mallaha Area, Eastern Desert, Egypt

DOI: 10.4236/gm.2023.131001, PP. 1-22

Keywords: Structure Trends, Uranium Zones, Alteration Zones, Magnetic Analysis, Landsat-8 OLI Image, Esh El-Mallaha Area

Full-Text   Cite this paper   Add to My Lib

Abstract:

The main scope of this research is to detect geologic structure trends affecting the study area, determine uranium anomalous areas and define alteration zones. Airborne magnetic data were used to detect the geologic structure trends affecting the study area through applying edge detectors such as total horizontal derivative, analytic signal and tilt derivative. The radio-spectrometry data and Landsat image data were used in determining the uranium anomalous areas and alteration zones. The integration between geology, magnetic and Landsat image was applied through constructing lineaments density map for the three data sets resulting in the leading of NW-SE trend all over the area. This integration makes clear that the basement (Red Sea hills), Esh El-mallaha range and G. Zeit are limiting two large basins (West Mallaha and Zeit). In addition, the main areas of uranium enrichment (Duwi formation at Esh El-Mallaha range) are found to be well related to alteration zones.

References

[1]  Abdel Hafeez, Th.H., Youssef, M.A.S. and Mohamed, W.H. (2015) Engineering Utilization of Airborne Gamma Ray Spectrometric Data for Geological Mapping and Radioactive Mineral Exploration of Gabel Umm Tineidba Area, Southeastern Desert, Egypt. World Journal of Engineering, 12, 149-160.
https://doi.org/10.1260/1708-5284.12.2.149
[2]  Minty, B. and FitzGerald, D. (2015) Developments in Airborne Gamma-Ray Spectrometry to Aid the Search for Strategic Minerals. KEGS Symposium 2015 ‘‘Exploration for Strategic Minerals’’, Toronto, 28 February 2015, 1-5.
[3]  Ahmed, S.B. (2018) Integration of Airborne Geophysical and Satellite Imagery Data to Delineate the Radioactive Zones at West Safaga Area, Eastern Desert, Egypt. NRIAG Journal of Astronomy and Geophysics, 7, 297-308.
https://doi.org/10.1016/j.nrjag.2018.07.005
[4]  Bishta, A.Z. (2013) Utilities of Landsat 7 Data and Selective Image Processing in Characterization of Radioactivity Zones of Wadi Baba-Wadi Shalal Area, Westcentral Sinai, Egypt. Arabian Journal of Geosciences, 6, 3513-3526.
https://doi.org/10.1007/s12517-012-0595-5
[5]  Pour, A.B., Park, Y., Park, T.Y.S., Hong, J.K., Hashim, M., Woo, J. and Ayoobi, I. (2018) Regional Geology Mapping Using Satellite-Based Remote Sensing Approach in Northern Victoria Land, Antarctica. Polar Sciences, 16, 23-46.
https://doi.org/10.1016/j.polar.2018.02.004
[6]  Chattoraj, S.L., Prasad, G., Sharma, R.U., Champatiray, P.K., Van der Meer, F.D., Guha, A. and Pour, A.B. (2020) Integration of Remote Sensing, Gravity, and Geochemical Data for Exploration of Cu-Mineralization in Alwar Basin, Rajasthan, India. International Journal of Applied Earth Observation and Geoinformation, 91, Article ID: 102162.
https://doi.org/10.1016/j.jag.2020.102162
[7]  Sroor, A., El-Bahi, S.M., Ahmed, F. and Abdel-Haleem, A.S. (2002) Natural Radioactivity and Radon Exhalation Rate of Soil in Southern in Egypt. Applied Radiation and Isotopes, 55, 873-879.
https://doi.org/10.1016/S0969-8043(01)00123-3
[8]  Ramsay, J.G. and Huber, M.I. (1987) The Techniques of Modern Structural Geology. In: Folds and Fractures, Vol. 2, Academic Press, London, 391 p.
[9]  Sabin’s, F.F. (1997) Remote Sensing; Principals and Interpretation. Fourth Edition, Freeman, San Francisco, 449.
[10]  Goetz, A.F.H., Rock, B.N. and Rowan, L.C. (1983) Remote Sensing for Exploration: An Overview. Economic Geology, 78, 573-590.
https://doi.org/10.2113/gsecongeo.78.4.573
[11]  Rowan, L.C., Kingstone, M.J. and Crowley, J.K. (1986) Spectral Reflectance of Carbonatite and Related Alkalic Igneous Rocks for Four North American Localities. Economic Geology, 81, 857-871.
https://doi.org/10.2113/gsecongeo.81.4.857
[12]  Abrams, M. and Hook, S.J. (1985) Simulated Aster Data for Geologic Studies. IEEE Transactions on Geoscience and Remote Sensing, 33, 692-699.
https://doi.org/10.1109/36.387584
[13]  Okada, K., Segawa, K. and Hayashi, I. (1993) Removal of the Vegetation Effect from LANDSAT TM and GER Imaging Spectroradiometer Data. ISPRS Journal of Photogrammetry and Remote Sensing, 48, 16-27.
https://doi.org/10.1016/0924-2716(93)90052-O
[14]  Amuda, O.S., Adebisi, S., Jimoda, L. and Alade, A. (2014) Challenges and Possible Panacea to the Municipal Solid Wastes Management in Nigeria. Journal of Sustainable Development Studies, 6, 64-70.
[15]  Poormirzaee, R. and Oskouei, M.M. (2010) Use of Spectral Analysis for Detection of Alterations in ETM Data, Yazd, Iran. Applied Geomatics, 2, 147-154.
https://doi.org/10.1007/s12518-010-0027-8
[16]  Ramadan, T.M., Abdelsalam, M.G. and Stern, R.J. (2001) Mapping Gold-Bearing Massive Sulfide Deposits in the Neoproterozoic Allaqi Suture, Southeast Egypt with Landsat TM and SIR-C/X SAR Images. Photogrammetric Engineering & Remote Sensing, 67, 491-497.
[17]  Mia, M.B. and Fujimitsu, Y. (2012) Mapping Hydrothermal Altered Mineral Deposits Using Landsat 7 ETM+ Image in and around Kuju Volcano, Kyushu, Japan. Journal of Earth System Science, 121, 1049-1057.
https://doi.org/10.1007/s12040-012-0211-9
[18]  Sabin’s, F.F. (1999) Remote Sensing for Mineral Exploration. Ore Geology Reviews, 14, 157-183.
https://doi.org/10.1016/S0169-1368(99)00007-4
[19]  Aydal, D., Ardal, E. and Dumanlilar, O. (2007) Application of the Crosta Technique for Alteration Mapping of Granitoidic Rocks Using ETM+ Data: Case Study from Eastern Tauride Belt (SE Turkey). International Journal of Remote Sensing, 28, 3895-3913.
https://doi.org/10.1080/01431160601105926
[20]  Liu, J.P., Song, M., Horton, R.M. and Hu, Y. (2013) Reducing Spread in Climate Model Projections of a September Ice-Free Arctic. Proceedings of the National Academy of Sciences of the United States of America, 110, 12571-12576.
https://doi.org/10.1073/pnas.1219716110
[21]  Tangestani, M.H. and Moore, F. (2000) Iron Oxide and Hydroxyl Enhancement Using the Crosta Method: A Case Study from the Zagros Belt, Fars Province, Iran. The International Journal of Applied Earth Observation and Geoinformation, 2, 140-146.
https://doi.org/10.1016/S0303-2434(00)85007-2
[22]  Holden, E.J., Fu, S.C., Kovesi, P., Dentith, M., Bourne, B. and Hope, M. (2011) Automatic Identification of Responses from Porphyry Intrusive Systems within Magnetic Data Using Image Analysis. Journal of Applied Geophysics, 74, 255-262.
https://doi.org/10.1016/j.jappgeo.2011.06.016
[23]  Gay Jr., S.P. (1972) Fundamental Characteristics of Aeromagnetic Lineaments, Their Geological Significance, and Their Significance to Geology. The New Basement Tectonics’ American Stereo Map Company, Salt Lake City, 94 p.
[24]  Stern, R.T. and Hedge, C.E. (1985) Geochronologic and Isotopic Constrains on Late Precambrian Crustal Evaluation in the Eastern Desert of Egypt. American Journal of Science, 285, 97-127.
https://doi.org/10.2475/ajs.285.2.97
[25]  Shackleten, R.M., Ries, A.C., Grahm, R.H. and Fitches, W.R. (1980) Late Precambrian Ophiolitic Mélange in the Eastern Desert of Egypt. Nature, 285, 472-474.
https://doi.org/10.1038/285472a0
[26]  Aboud, E., Mekkawi, M. and Khalil, A. (2006) Interpretation of Aeromagnetic Data of Esh El Mellaha Area, Gulf of Suez, Egypt. NRIAG Journal of Geophysics, Special Issue, 45-58.
[27]  Dardir, A.A. and Abu Zeid, K.M. (1972) Geology of the Basement Rocks between Latitudes 27 00 and 27 30 N, Eastern Desert. Annals of the Geological Survey of Egypt, 2, 129-159.
[28]  Essawy, M.A. and Abu Zeid, K.M. (1972) Atalla Felsite Intrusion and Its Neighboring Flows and Tuffs, Eastern Desert. Annals of the Geological Survey of Egypt, 2, 271-280.
[29]  Said, R. (1962) Geology of Egypt. Elsevier Publ. Co., Amsterdam and New York, 293-319.
[30]  AeroService (1984) Final Operational Report of Airborne Magnetic/Radiation Survey in the Eastern Desert, Egypt, for the Egyptian General Petroleum Corporation: AeroService Division, Houston, Texas, 1984, Six Volumes. Western Geophysical Company of America.
[31]  Dobrin, M.B. (1976) Introduction to Geophysical Prospecting. McGraw-Hill Book Company, New York, 630 p.
[32]  Ibraheem, I.M., Gurk, M., Tougiannidis, N. and Tezkan, B. (2018) Subsurface Imaging of the Neogene Mygdonian Basin, Greece Using Magnetic Data. Journal of Pure and Applied Geophysics, 175, 2955-2973.
https://doi.org/10.1007/s00024-018-1809-x
[33]  Cordell, L. and Grauch, V.J.S. (1985) Mapping Basement Magnetization Zones from Aeromagnetic Data in the San Juan Basin, New Mexico. In: Hinzc, W.J., Ed., The Utility of Regional Gravity and Magnetic Anomaly Maps, Society of Exploration Geophysicists, Tulsa, 181-197.
https://doi.org/10.1190/1.0931830346.ch16
[34]  Nabighian, M.N. (1972) The Analytic Signal of Two-Dimensional Magnetic Bodies with Polygonal Cross-Section: Its Properties and Use for Automated Anomaly Interpretation. Geophysics, 37, 507-517.
https://doi.org/10.1190/1.1440276
[35]  Roest, W.R., Verhoef, J. and Pilkngton, M. (1992) Magnetic Interpretation Using the 3-D Analytic Signal. Geophysics, 57, 116-125.
https://doi.org/10.1190/1.1443174
[36]  Cooper, G.R.J. and Cowan, D.R. (2006) Enhancing Potential Field Data Using Filters Based on the Local Phase. Computers & Geosciences, 32, 1585-1591.
https://doi.org/10.1016/j.cageo.2006.02.016
[37]  Grant, F.S. and West, G.F. (1965) Interpretation Theory in Applied Geophysics. McGraw-Hill, New York.
[38]  Phillips, J.D. (2002) Processing and Interpretation of Aeromagnetic Data for the Santa Cruz Basin-Patahonia Mountains Area, South-Central Arizona. U.S. Geological Survey Open-File Report 02-98, U.S. Geological Survey, Reston.
https://doi.org/10.3133/ofr0298
[39]  Miller, H.G. and Singh, V. (1994) Potential Field Tilt—A New Concept for Location of Potential Field Sources. Journal of Applied Geophysics, 32, 213-217.
https://doi.org/10.1016/0926-9851(94)90022-1
[40]  Al-Ibiari, M.G., Ismail, A.A., El-Khafeef, A.A., Basheer, A.A., El-laban, A.M. and Tarek, Y. (2018) Analysis and Interpretation of Aeromagnetic Data for Wadi Zeidun Area, Central Eastern Desert, Egypt. Egyptian Journal of Petroleum, 27, 285-293.
https://doi.org/10.1016/j.ejpe.2017.04.002
[41]  Brethes, A., Guarnieri, P., Rasmussen, T.M. and Bauer, T.E. (2018) Interpretation of Aeromagnetic Data in the Jameson Land Basin, Central East Greenland: Structures and Related Mineralized Systems. Tectonophysics, 724-725, 116-136.
https://doi.org/10.1016/j.tecto.2018.01.008
[42]  Arisoy, M. and Dikmen, ü. (2013) Edge Detection of Magnetic Sources Using Enhanced Total Horizontal Derivative of the Tilt Angle. Bulletin of the Earth Sciences Application and Research Centre of Hacettepe University, 34, 73-82.
[43]  Ibraheem, I.M., Haggag, M. and Tezkan, B. (2019) Edge Detectors as Structural Imaging Tools Using Aeromagnetic Data: A Case Study of Sohag Area, Egypt. Geosciences, 9, Article No. 211.
https://doi.org/10.3390/geosciences9050211
[44]  International Atomic Energy Agency (IAEA) (1979) Gamma-Ray Surveys in Uranium Exploration. Technical Report Series 186, Vienna.
[45]  Elkhadragy, A.A., Ismail, A.A., Eltarras, M.M. and Azzazy, A. (2016) Utilization of Airborne Gamma Ray Spectrometric Data for Radioactive Mineral Exploration of G.Abu Had—G.Umm Qaraf Area, South Eastern Desert, Egypt. NRIAG Journal of Astronomy and Geophysics, 6, 148-161.
https://doi.org/10.1016/j.nrjag.2016.12.001
[46]  Sultan, M., Arvidson, R.E. and Sturchio, N.C. (1986) Mapping of Serpentinites in the Eastern Desert of Egypt by Using Landsat Thematic Mapper Data. The Journal of Geology, 14, 995-999.
https://doi.org/10.1130/0091-7613(1986)14<995:MOSITE>2.0.CO;2
[47]  Abrams, M.J., Brown, D., Lepley, L. and Sadowski, R. (1983) Remote Sensing for Porphyry Copper Deposits in Southern Arizona. Economic Geology, 78, 591-604.
https://doi.org/10.2113/gsecongeo.78.4.591
[48]  Gupta, R.P. (2003) Remote Sensing Geology. 2nd Edition, Springer, Berlin.
https://doi.org/10.1007/978-3-662-05283-9
[49]  Ramadan, T.M. and Sultan, S.A. (2004) Integration of Remote Sensing, Geological and Geophysical Data for the Identification of Massive Sulphide Zones at Wadi Allaqi Area, South Eastern Desert, Egypt. Vol. 18, MERC, Ain Shams University, Cairo, 165-174.
[50]  Marghany, M. and Hashim, M. (2010) Lineament Mapping Using Multispectral Remote Sensing Satellite Data. International Journal of Physical Sciences, 5, 1501-1507.
https://doi.org/10.3923/rjasci.2010.126.130
[51]  Mwaniki, M.W., Moeller, M.S. and Schellmann, G. (2015) A Comparison of Landsat 8 (OLI) and Landsat 7 (ETM+) in Mapping Geology and Visualizing Lineaments: A Case Study of Central Region Kenya. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-7/W3, 897-903.
https://doi.org/10.5194/isprsarchives-XL-7-W3-897-2015
[52]  Kamel, M., Youssef, M., Hassan, M. and Bagash, F. (2016) Utilization of ETM+ Landsat Data in Geologic Mapping of Wadi Ghadir-Gabal Zabara Area, Central Eastern Desert, Egypt. The Egyptian Journal of Remote Sensing and Space Sciences, 19, 343-360.
https://doi.org/10.1016/j.ejrs.2016.06.003
[53]  Zoheir, B., Emam, A., Abdel-Wahed, M. and Soliman, N. (2019) Multispectral and Radar Data for the Setting of Gold Mineralization in the South-Eastern Desert, Egypt. Remote Sensing, 11, Article No. 1450.
https://doi.org/10.3390/rs11121450
[54]  Saunders, D.F. and Potts, M.J. (1976) Interpretation and Application of High Sensitivity Airborne Gamma Ray Spectrometer Data. Exploration for Uranium Ore Deposits. Proc. Series. IAEA, Vienna.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413