全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

高熵析氧催化剂的研究进展
Research Progress of High Entropy Catalysts for Oxygen Evolution Reaction

DOI: 10.12677/NAT.2022.124030, PP. 296-303

Keywords: 高熵材料,电解水,析氧反应,催化剂
High Entropy Materials
, Electrolytic Water, Oxygen Evolution Reaction, Catalyst

Full-Text   Cite this paper   Add to My Lib

Abstract:

高熵材料是一类由多种元素以等摩尔比或者近等摩尔比组成的新型多主元材料,包括高熵合金和一系列高熵化合物,如高熵氧化物和氢氧化物、高熵磷化物、高熵硫化物、高熵甘氨酸盐等。高熵材料具备无序的组成成分、广泛的可调控性和特殊的物理化学性质,具有成为高效析氧催化剂的潜力,有望成为一种新型的电解水析氧反应催化剂,能够取代传统金属氧化物和标准贵金属基催化剂用于催化电解水析氧反应。本文主要对近年来高熵材料在析氧反应催化剂方面的研究进展进行了总结,对高熵材料未来在电解水制氢领域的发展趋势和应用前景进行了展望。
High entropy materials are a new kind of multi-principal component materials composed of many elements in equal or near equal molar ratio, including high entropy alloys and a series of high entropy compounds, such as high entropy oxides and hydroxides, high entropy phosphates, high entropy sulfides, high entropy glycine salts, etc. High entropy materials have disordered components, wide adjustability, and spe-cial physical and chemical properties. They have the potential to become high-efficiency oxygen evolution catalysts, and may become a new type of electrolytic water oxygen evolution reaction cat-alyst, which can replace the traditional metal oxides and standard noble metal-based catalysts for catalytic electrolytic water oxygen evolution reaction. In this paper, the research progress of high entropy materials in oxygen evolution reaction catalysts in recent years is summarized, and the development trend and application prospect of high entropy materials in hydrogen production from electrolytic water in the future are prospected.

References

[1]  赵雪莹, 李根蒂, 孙晓彤, 等. “双碳”目标下电解制氢关键技术及其应用进展[J]. 全球能源互联网, 2021, 4(5): 436-446.
[2]  Nafiseh, R. and Brant, A.P. (2020) Characterisation of Tantalum Carbide as a Support for Iridium Based Oxygen Evolution Reaction Catalyst for Polymer Electrolyte Membrane Water Electrolysis. ECS Meeting Abstracts, MA2020-01, 1670.
https://doi.org/10.1149/MA2020-01381670mtgabs
[3]  L?ffler, T., Ludwig, A., Rossmeisl, J., et al. (2021) What Makes High-Entropy Alloys Exceptional Electrocatalysts? Angewandte Chemie (International ed.), 60, 26894-26903.
https://doi.org/10.1002/anie.202109212
[4]  Huang, T.H., et al. (2021) PtAuSn Nanorod Catalysts with a Beneficial Core/Shell Structure for Oxygen Reduction Electrocatalysis. ACS Applied Energy Materials, 4, 3067-3073.
https://doi.org/10.1021/acsaem.0c02772
[5]  Hsieh, C.-T., et al. (2020) NiFeMo Alloy Inverse-Opals on Ni Foam as Outstanding Bifunctional Catalysts for Electrolytic Water Splitting of Ultra-Low Cell Voltages at High Current Densities. Applied Catalysis B: Environmental, 267, Article ID: 118376.
https://doi.org/10.1016/j.apcatb.2019.118376
[6]  杜英侠, 刘瑞, 鲁望婷, 等. 生物质衍生碳材料电催化裂解水研究进展[J]. 武汉大学学报(理学版), 2022, 68(2): 123-130.
[7]  Zhu, H., Zhu, Z.F., Hao, J.C., et al. (2022) High-Entropy Alloy Stabilized Active Ir for Highly Efficient Acidic Oxygen Evolution. Chemical Engineering Journal, 431, Article ID: 133251.
https://doi.org/10.1016/j.cej.2021.133251
[8]  Tang, J., Xu, J.L., Ye, Z.G., et al. (2021) Microwave Sintered Porous CoCrFeNiMo High Entropy Alloy as an Efficient Electrocatalyst for Alkaline Oxygen Evo-lution Reaction. Journal of Materials Science & Technology, 79, 171-177.
https://doi.org/10.1016/j.jmst.2020.10.079
[9]  Wang, H.Y., et al. (2020) Nanostructured Amorphous Fe29Co27Ni23Si9B12 High-Entropy-Alloy: An Efficient Electrocatalyst for Oxygen Evolution Reaction. Journal of Materi-als Science & Technology, 68, 191-198.
[10]  Zhou, P.F., Liu, D., Chen, Y.Y., et al. (2022) Corrosion Engineering Boosting Bulk Fe50Mn30Co10Cr10 High-Entropy Alloy as High-Efficient Alkaline Oxygen Evolution Reaction Electrocat-alyst. Journal of Materials Science & Technology, 109, 267-275.
https://doi.org/10.1016/j.jmst.2021.09.003
[11]  Liu, H., Qin, H.Y., Kang, J.L., et al. (2022) A Freestanding Na-noporous NiCoFeMoMn High-Entropy Alloy as an Efficient Electrocatalyst for Rapid Water Splitting. Chemical Engi-neering Journal, 435, Article ID: 134898.
https://doi.org/10.1016/j.cej.2022.134898
[12]  Zhao, S.Q., Wu, H.Y., Yin, R., et al. (2021) Preparation and Elec-trocatalytic Properties of (FeCrCoNiAl0.1)Ox High-Entropy Oxide and NiCo-(FeCrCoNiAl0.1)Ox Heterojunction Films. Journal of Alloys and Compounds, 868, Article ID: 159108.
https://doi.org/10.1016/j.jallcom.2021.159108
[13]  Liu, F.M., Yu, M., Chen, X., et al. (2022) Defective High-Entropy Rocksalt Oxide with Enhanced Metal-Oxygen Covalency for Electrocatalytic Oxygen Evolution. Chinese Journal of Catalysis, 43, 122-129.
https://doi.org/10.1016/S1872-2067(21)63794-4
[14]  Wang, Q.Q., Li, J.Q., Li, Y.J., et al. (2022) Non-Noble Met-al-Based Amorphous High-Entropy Oxides as Efficient and Reliable Electrocatalysts for Oxygen Evolution Reaction. Nano Research, 15, 8751-8759.
https://doi.org/10.1007/s12274-022-4179-8
[15]  Zhang, L.J., Cai, W.W. and Bao, N.Z. (2021) Top-Level Design Strategy to Construct an Advanced High-Entropy Co-Cu-Fe-Mo (Oxy)Hydroxide Electrocatalyst for the Oxygen Evolu-tion Reaction. Advanced Materials (Deerfield Beach, Fla.), 33, Article ID: 2100745.
https://doi.org/10.1002/adma.202100745
[16]  Li, M.Z., Xi, X.Y., Wang, H., et al. (2022) A Universal, Green, and Self-Reliant Electrolytic Approach to High-Entropy Layered (Oxy)Hydroxide Nanosheets for Efficient Electrocatalytic Water Oxidation. Journal of Colloid and Interface Science, 617, 500-510.
https://doi.org/10.1016/j.jcis.2022.02.135
[17]  Zhao, X.H., Xue, Z.M., Chen, W.J., et al. (2020) Eutectic Synthesis of High-Entropy Metal Phosphides for Electrocatalytic Water Splitting. ChemSusChem, 13, 2038-2042.
https://doi.org/10.1002/cssc.202000173
[18]  Qiao, H.Y., Wang, X.Z., Dong, Q., et al. (2021) A High-Entropy Phosphate Catalyst for Oxygen Evolution Reaction. Nano Energy, 86, Article ID: 106029.
https://doi.org/10.1016/j.nanoen.2021.106029
[19]  Tang, J., Xu, J.L., Ye, Z.G., et al. (2021) Synthesis of Flow-er-Like Cobalt, Nickel Phosphates Grown on the Surface of Porous High Entropy Alloy for Efficient Oxygen Evolution. Journal of Alloys and Compounds, 885, Article ID: 160995.
https://doi.org/10.1016/j.jallcom.2021.160995
[20]  Cui, M.J., Yang, C.P., Li, B.Y., et al. (2020) High-Entropy Metal Sulfide Nanoparticles Promise High-Performance Oxygen Evolution Reaction. Advanced Energy Materials, 11, Article ID: 2002887.
https://doi.org/10.1002/aenm.202002887
[21]  Nguyen, T.X., Su, Y.H., Lin, C.C., et al. (2021) Self-Reconstruction of Sulfate-Containing High Entropy Sulfide for Exceptionally High-Performance Oxygen Evolution Reaction Electrocat-alyst. Advanced Functional Materials, 31, Article ID: 2106229.
https://doi.org/10.1002/adfm.202106229
[22]  Nguyen, T.X., Su, Y.H., Lin, C.C., et al. (2021) A New High En-tropy Glycerate for High Performance Oxygen Evolution Reaction. Advanced Science, 8, Article ID: 2002446.
https://doi.org/10.1002/advs.202002446
[23]  Ting, N.H., Nguyen, T.X., Lee, C.H., et al. (2022) Composi-tion-Controlled High Entropy Metal Glycerate as High-Performance Electrocatalyst for Oxygen Evolution Reaction. Ap-plied Materials Today, 27, Article ID: 101398.
https://doi.org/10.1016/j.apmt.2022.101398

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413