全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

低湿环境下转轮除湿材料的除湿性能研究
Research on the Dehumidification of RotaryDehumidification Materials in Low Humidity Environment

DOI: 10.12677/NAT.2022.124031, PP. 304-310

Keywords: 除湿,分子筛,转轮,BET方程
Dehumidification
, Molecular Sieve, Rotary, BET Equation

Full-Text   Cite this paper   Add to My Lib

Abstract:

如何选择高效除湿材料一直是低湿操作环境领域的关注重点。本文以硅胶、5A分子筛和13X分子筛及其负载瓦楞玻璃纤维材料作为除湿材料,系统探讨了其在低湿度(RH = 13%)下的除湿效率,并通过氮气吸脱附测试及BET方程研究,探究了吸湿材料表面特性与其静动态吸附效果之间的构效关系。研究结果表明,13X分子筛具有更高的比表面积和低湿度下的除湿能力,而5A分子筛表面吸附更靠近Langmuir吸附,吸湿效果也更为持久。本研究将为除湿转轮选材提供研究方法和理论基础。
How to choose high-efficiency dehumidification materials has always been the focus of attention in the field of low-humidity operating environments. In this paper, silica gel, 5A molecular sieve and 13X molecular sieve and their supported corrugated glass fiber materials are used as dehumidify-ing materials to systematically discuss their dehumidification efficiency under low humidity (RH = 13%). Through nitrogen adsorption and desorption test and BET equation study, the struc-ture-activity relationship between the surface properties of hygroscopic materials and their static and dynamic adsorption effects was explored. The research results show that the 13X molecular sieve has a higher specific surface area and dehumidification ability under low humidity, while the 5A molecular sieve surface adsorption is closer to Langmuir adsorption and its moisture absorption effect is more durable. This research will provide research methods and a theoretical basis for the selection of dehumidifying rotors.

References

[1]  Kawashita, R. and Masuda, A. (2020) Dehumidifying Film, Dehumidifying Element, Method for Fabricating Dehumidi-fying Film, and Method for Fabricating Dehumidifying Element. US Patent No. 20200023305A1.
[2]  牛永红, 修诗博, 张丽奇, 等. 空调用固体除湿材料研究进展[J]. 应用化工, 2018, 47(11): 2464-2468.
[3]  Xiang, C., Chen, Y., Zhao, S., et al. (2020) A Novel Packaged Outdoor Air Dehumidifier with Exhaust Air Heat Pump-Experiment and Sim-ulation. Applied Thermal Engineering, 181, Article ID: 115986.
https://doi.org/10.1016/j.applthermaleng.2020.115986
[4]  Jani, D.B., Deep, L. and Soham, P. (2018) A Critical Review on Evaporative Desiccant Cooling. International Journal of Innovative and Emerging Research in Engineering, 5, 2394-3343.
[5]  谭益坤. 基于转轮除湿的低露点蒸发冷却系统的研究[D]: [硕士学位论文]. 西安: 西安科技大学, 2020: 1-73.
[6]  方玉堂, 蒋赣. 转轮除湿机吸附材料的研究进展[J]. 化工进展, 2005, 24(10): 1131-1135.
[7]  段东新, 刘晓宇, 何静. 基于煤矿环境的除湿剂的选择及其性能研究[J]. 矿业装备, 2018(2): 44-45.
[8]  白彪坤. 分子模拟研究N2在5A分子筛上的吸附和扩散[J]. 离子交换与吸附, 2020, 36(5): 458-467.
[9]  牛永红, 郭宁, 张雪峰, 等. 内冷型活性氧化铝及沸石分子筛空气除湿性能实验研究[J]. 建筑科学, 2016, 32(10): 44-49.
[10]  梁肃臣. 常用吸附剂的基础性能及应用[J]. 低温与特气, 1995(4): 55-60.
[11]  Yang, L. and Wei, D.-C. (2016) Semi-conducting Covalent Organic Frameworks: A Type of Two-Dimensional Conducting Polymers. Chinese Chemical Let-ters, 8, 1395-1404.
https://doi.org/10.1016/j.cclet.2016.07.010
[12]  Mehandjiev, D.R. and Nickolov, R.N. (1992) Dependence of the C Constant in the Brunauer-Emmett-Teller Equation on Water Pre-Adsorbed on Activated Carbon. Adsorption Science & Technology, 9, 48-53.
https://doi.org/10.1177/026361749200900105
[13]  曾瑞璇, 颜承初, 李梅. 除湿等级划分及深度除湿技术研究进展[J]. 制冷学报, 2020, 41(6): 12-21.
[14]  廖艳春. 冷镜式露点仪计量标准检定或校准结果的测量不确定度评定[J]. 中国计量, 2021(3): 109-110.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413