全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

掺杂非金属元素B、N和O对单层PC6电学和磁学性质的影响
Effects of Doped Non-Metallic Elements B, N and O on Electronic and Magnetic Properties of Monolayer PC6

DOI: 10.12677/MP.2022.126015, PP. 146-153

Keywords: 单层PC6,第一性原理,掺杂,电学性质,磁学性质,Monolayer PC6, First-Principles Calculations, Doped, Electronic Properties, Magnetic Properties

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文采用基于密度泛函理论的第一性原理计算方法,研究了非金属元素B、N和O掺杂对单层PC6的电子结构和磁学性质的影响。本征体系单层PC6是直接带隙半导体,没有磁性。计算结果表明,掺杂非金属元素B、N和O使得单层PC6发生了局域结构畸变。此外,这三种非金属元素掺杂对单层PC6的电学性质产生了影响,使得单层PC6发生了从半导体到导体的转变。更为有趣的是,B和O两种非磁性元素的引入使原本没有磁性的单层PC6具有了磁性。
The first principles calculations method based on density functional theory in this paper is used to study the influence of the doped non-metallic elements B, N and O on the electronic structure and magnetic properties of monolayer PC6. The intrinsic system PC6 is a direct band gap semiconductor without magnetism. The calculation results show that, the introduction of non-metallic elements B, N and O induces local structural distortion in monolayer PC6. In addition, doping these three non-metallic elements has an impact on the electronic properties of monolayer PC6, making the monolayer PC6 change from semiconductor to conductor. More interestingly, the introduction of non-magnetic atoms B and O makes the original non-magnetic monolayer PC6 possess magnetism.

References

[1]  Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., et al. (2004) Electric Field Effect in Atomically Thin Carbon Films. Science, 306, 666-669.
https://doi.org/10.1126/science.1102896
[2]  Miro, P., Au-diffred, M. and Heine, T. (2014) An Atlas of Two-Dimensional Materials. Chemical Society Reviews, 43, 6537-6554.
https://doi.org/10.1039/C4CS00102H
[3]  Komsa, H.P., Kotakoski, J., Kurasch, S., Lehtinen, O., Kaiser, U. and Krasheninnikov, A. (2012) Two-Dimensional Transition Metal Dichalcogenides under Electron Irradiation: Defect Pro-duction and Doping. Physical Review Letters, 109, Article ID: 035503.
https://doi.org/10.1103/PhysRevLett.109.035503
[4]  Ma, Z.N., Wang, B., Ou, L.K., Zhang, Y., Zhang, X. and Zhou, Z. (2016) Structure and Properties of Phosphorene- Like IV-VI 2D Materials. Nanotechnology, 27, Article ID: 415203.
https://doi.org/10.1088/0957-4484/27/41/415203
[5]  Ni, Z.Y., Liu, Q.H., Tang, K.C., Zheng, J.X., Zhou, J., Qin, R., et al. (2011) Tunable Bandgap in Silicene and Germanene. Nano Letters, 12, 113-118.
https://doi.org/10.1021/nl203065e
[6]  Liao, L., Lin, Y.C., Bao, M.Q., Cheng, R., Bai, J.W., Liu, Y., et al. (2010) High-Speed Graphene Transistors with a Self-Aligned Nanowire Gate. Nature, 467, 305-308.
https://doi.org/10.1038/nature09405
[7]  Schwierz, F. (2010) Graphene Transistors. Nature Nanotechnology, 5, 487-496.
https://doi.org/10.1038/nnano.2010.89
[8]  Cheng, Y.C., Zhu, Z.Y., Mi, W.B., Guo, Z.B. and Schwingenschlogl, U. (2013) Prediction of Two-Dimensional Diluted Magnetic Semiconductors: Doped Monolayer MoS2 Systems. Physical Review B, 87, 100401(R).
https://doi.org/10.1103/PhysRevB.87.100401
[9]  Bafekry, A., Faraji, M., Mohamed, M., Fadlallah, A., Khatibani, B., Ziabari, A.A., et al. (2021) Tunable Electronic and Magnetic Properties of MoSi2N4 Monolayer via Vacancy Defects, Atomic Adsorption and Atomic Doping. Applied Surface Science, 559, Article ID: 149862.
https://doi.org/10.1016/j.apsusc.2021.149862
[10]  Yu, T., Zhao, Z.Y., Sun, Y.H., Bergara, A., Lin, J.Y., Zhang, S.T., et al. (2019) Two-Dimensional PC6 with Direct Band Gap and Anisotropic Carrier Mobility. Journal of the Ameri-can Chemical Society, 141, 1599-1605.
https://doi.org/10.1021/jacs.8b11350
[11]  Dou, K.Y., Ma, Y.D., Zhang, T., Huang B.B. and Dai, Y. (2019) Pre-diction of Two-Dimensional PC6 as a Promisinganode Material for Potassium-Ion Batteries. Physical Chemistry Chemi-cal Physics, 21, 26212-26218.
https://doi.org/10.1039/C9CP05251H
[12]  Yu, X.F., Xiao, L. and Li, Y.C. (2020) PC6 Monolayer: A Potential Candidate as NOx Sensor with High Sensitivity and Selectivity. Physica E: Low-Dimensional Systems and Nanostruc-tures, 118, Article ID: 113958.
https://doi.org/10.1016/j.physe.2020.113958
[13]  Zhang, J.N., Xu, L.Q., Yang, C., Zhang, X.Y., Ma, L., Zhang, M., et al. (2020) Two-Dimensional Single-Layer PC6 as Promising Anode Materials for Li-Ion Batteries: The First-Principles Calculations Study. Applied Surface Science, 510, Article ID: 145493.
https://doi.org/10.1016/j.apsusc.2020.145493
[14]  Fan, K., Ying, Y., Luo, X. and Huang, H. (2020) Monolayer PC5/PC6: Promising Anode Materials for Lithium-Ion Batteries. Physical Chemistry Chemical Physics, 22, 16665-16671.
https://doi.org/10.1039/D0CP01133A
[15]  Jiang, Q.L., Meng, Y.N., Li, K., Wang, Y. and Wu, Z.J. (2021) Theo-retical Insights into Bimetallic Atoms Supported on PC6 as Highly Efficient Electrocatalysts for N2 Electroreduction to NH3. Applied Surface Science, 547, Article ID: 149208.
https://doi.org/10.1016/j.apsusc.2021.149208
[16]  Du, P.Y., Huang, Y.H., Wang, J.N., Zhu, G.Q., Fei, M., Zhang, J.M., et al. (2021) The Electronic and Optical Properties of PC6/WS2 Heterostructure Modulated via Biaxial Strain and External Electric Field. Surfaces and Interfaces, 24, Article ID: 101100.
https://doi.org/10.1016/j.surfin.2021.101100
[17]  Han, S., Wei, X.M., Huang, Y.H., Zhang, J.M., Zhu, G.Q. and Yang, J. (2022) Influence of Strain and External Electric Field on the Performance of PC6/MoSe2 Heterostruc-ture. Electronic Materials, 57, 477-488.
https://doi.org/10.1007/s10853-021-06636-0
[18]  Jiang, Q.L., Meng, Y.N., Li, K., Wang, Y. and Wu, Z.J. (2021) Screening Highly Efficient Hetero-Diatomic Doped PC6 Electrocatalysts for Selective Nitrogen Reduction to Ammonia. Journal of the Electrochemical Society, 168, Article ID: 116519.
https://doi.org/10.1149/1945-7111/ac3aba
[19]  Du, P.Y., Huang, Y.H., Zhu, G.Q., Ma, F., Zhang, J.M., Wei, X.M., et al. (2021) Nitrogen Reduction Reaction on Single Cluster Catalysts of Defective PC6-Trimeric or Tetrameric Transition Metal. Physical Chemistry Chemical Physics, 24, 2219-2226.
https://doi.org/10.1039/D1CP04926G
[20]  王欣, 马玲. 基于密度泛函理论研究的一种新型气体传感材料: Pd掺杂的PC6 [J]. 四川大学学报: 自然科学版, 2022, 59(1): 014001. http://dx.doi.org/10.19907/j.0490-6756.2022.014001
[21]  Zhong, M., Zeng, W., Qin, H., Zhu, S.H., Li, X.H., Liu, F.S., et al. (2022) Doping Effects on the Antibonding States and Carriers of Two-Dimensional PC6. Physical Chemistry Chemical Physics, 24, Article ID: 10175.
https://doi.org/10.1039/D2CP00848C
[22]  Segall, M.D., Lindan, J.D., Probert, M.J., Pickard, C.J., Hasnip, P.J., Clark, S.J., et al. (2002) First-Principles Simulation: Ideas, Illustrations and the CASTEP Code. Journal of Physics: Condensed Matter, 14, 2717-2744.
https://doi.org/10.1088/0953-8984/14/11/301
[23]  Perdew, J.P., Burke, K. and Ernzerhof, M. (1996) Generalized Gradient Approximation Made Simple. Physical Review Letters, 77, 3865-3868.
https://doi.org/10.1103/PhysRevLett.77.3865

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413