全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Review of Glass and Crystallizations of Glass-Ceramics

DOI: 10.4236/ampc.2022.1211018, PP. 261-288

Keywords: Glass Formation Theories, Crystallization, Glass-Ceramics, Processing of Powder and Bulk Glasses

Full-Text   Cite this paper   Add to My Lib

Abstract:

The fundamental science behind glass and glass-ceramics in relation to research including syntheses, processing, characterization and applications are critically reviewed in this paper. The crystalline structure of the crystalline phases/s investigated in the literature?is?also discussed. Throughout this paper, the scene is set toward the overall picture of the rationale behind the choice of a glass system. Additionally, earlier reviews do not include the most recent literature in this fast-moving?field. The main methods of synthesizing glasses and glass-ceramics are explained and described in relation to their applications. The paper concludes with recommendations for future research.

References

[1]  Zachariasen, W.H. (1932) The Atomic Arrangement in Glass. Journal of the American Chemical Society, 54, 3841-3851.
https://doi.org/10.1021/ja01349a006
[2]  ASTM (1945) Standard Terminology of Glass and Glass Products. American Society for Testing and Materials, West Conshohocken.
[3]  McMillan, P.W. (1979) Glass-Ceramics. Academic Press, Cambridge, a. 1-26, b. 38-61, c. 132-137.
[4]  Turnbull, D. (1969) Under What Conditions Can a Glass Be Formed? Contemporary Physics, 10, 473-488.
https://doi.org/10.1080/00107516908204405
[5]  Ojovan, M.I. (2021) Glass Formation. In: Richet, P., Ed., Encyclopedia of Glass Science, Technology, History, and Culture, Wiley, Hoboken, 249-259.
https://doi.org/10.1002/9781118801017.ch3.1
[6]  Mauro, J.C. (2014) Grand Challenges in Glass Science. Frontiers in Materials, 1, Article No. 20.
https://doi.org/10.3389/fmats.2014.00020
[7]  Kauffman, G.B. (1997) Victor Moritz Goldschmidt (1888-1947): A Tribute to the Founder of Modern Geochemistry on the Fiftieth Anniversary of His Death. The Chemical Educator, 2, 1-26.
https://doi.org/10.1007/s00897970143a
[8]  Pauling, L. (1927) The Sizes of Ions and the Structure of Ionic Crystals. Journal of the American Chemical Society, 49, 765-790.
https://doi.org/10.1021/ja01402a019
[9]  Lai, C.F. and Silverman, A. (1928) Beryllium Glass1. Journal of the American Ceramic Society, 11, 535-541.
https://doi.org/10.1111/j.1151-2916.1928.tb17038.x
[10]  Mastelaro, V.R. and Zanotto, E.D. (2018) X-Ray Absorption Fine Structure (XAFS) Studies of Oxide Glasses—A 45-Year Overview. Materials, 11, Article No. 204.
https://doi.org/10.3390/ma11020204
[11]  Varshneya, A.K. and Tomozawa, M. (1994) Fundamentals of Inorganic Glasses. Journal of Non Crystalline Solids, 170, 112.
https://doi.org/10.1016/0022-3093(94)90112-0
[12]  Kingery, W.D. (1960) Introduction to Ceramics. Wiley and Sons, Hoboken, a, 25-81 b, 320-357.
[13]  Sun, K. (1947) Fundamental Condition of Glass Formation. Journal of the American Ceramic Society, 30, 277-281.
https://doi.org/10.1111/j.1151-2916.1947.tb19654.x
[14]  Jones, G.O. (1949) Viscosity and Related Properties in Glass. Reports on Progress in Physics, 12, 133-162.
https://doi.org/10.1088/0034-4885/12/1/307
[15]  Ojovan, M.I. (2009) Viscosity and Glass Transition in Amorphous Oxides. Advances in Condensed Matter Physics, 2008, Article ID: 817829.
https://doi.org/10.1155/2008/817829
[16]  Lee, S.K. and Stebbins, J.F. (2000) Al-O-Al and Si-O-Si Sites in Framework Aluminosilicate Glasses with Si/Al = 1: Quantification of Framework Disorder. Journal of Non-Crystalline Solids, 270, Article ID: 260264.
https://doi.org/10.1016/S0022-3093(00)00089-2
[17]  Isard, J.O. (1969) The Mixed Alkali Effect in Glass. Journal of Non-Crystalline Solids, 1, 235-261.
https://doi.org/10.1016/0022-3093(69)90003-9
[18]  Day, D.E. (1976) Mixed Alkali Glasses—Their Properties and Uses. Journal of Non-Crystalline Solids, 21, 343-372.
https://doi.org/10.1016/0022-3093(76)90026-0
[19]  Shelby, J.E. (2005) Introduction to Glass Science and Technology. Royal Society of Chemistry, London, a. 72-109, b. 237-247, c. 138-168.
[20]  Neuville, D.R. and Mysen, B.O. (1996) Role of Aluminium in the Silicate Network: In Situ, High-Temperature Study of Glasses and Melts on the Join SiO2-NaAlO2. Geochimica et Cosmochimica Acta, 60, 1727-1737.
https://doi.org/10.1016/0016-7037(96)00049-X
[21]  Riebling, E.F. (1966) Structure of Sodium Aluminosilicate Melts Containing at Least 50 Mole % SiO2 At 1500 °C. The Journal of Chemical Physics, 44, 2857-2865.
https://doi.org/10.1063/1.1727145
[22]  Petkov, V., Billinge, S., Shastri, S. and Himmel, B. (2000) Polyhedral Units and Network Connectivity in Calcium Aluminosilicate Glasses from High-Energy X-Ray Diffraction. Physical Review Letters, 85, 3436-3439.
https://doi.org/10.1103/PhysRevLett.85.3436
[23]  Zhang, P., Dunlap, C., Florian, P., Grandinetti, P., Farnan, I. and Stebbins, J. (1996) Silicon Site Distributions in an Alkali Silicate Glass Derived by Two-Dimensional 29 Si Nuclear Magnetic Resonance. Journal of Non-Crystalline Solids, 204, 294-300.
https://doi.org/10.1016/S0022-3093(96)00601-1
[24]  Hill (1996) An Alternative View of the Degradation of Bioglass. Journal of Materials Science Letters, 15, 1122.
https://doi.org/10.1007/BF00539955
[25]  Martin, R.A., Yue, S., Hanna, J.V., Lee, P.D., Newport, R.J., Smith, M.E. and Jones, J.R. (2012) Characterizing the Hierarchical Structures of Bioactive Sol-Gel Silicate Glass and Hybrid Scaffolds for Bone Regeneration. Philosophical Transactions of the Royal Society A, 370, 1422-1443.
https://doi.org/10.1098/rsta.2011.0308
[26]  Barlett, H.B. (1932) Occurrence and Properties of Crystalline Alumina in Silicate Melts. Journal of the American Ceramic Society, 15, 361.
https://doi.org/10.1111/j.1151-2916.1932.tb13944.x
[27]  Mysen, B.O., Virgo, D. and Kushiro, I. (1981) The Structural Role of Aluminum in Silicate Melts; a Raman Spectroscopic Study at 1 Atmosphere. American Mineralogist, 66, 678-701.
[28]  Angell, C.A. (1995) Formation of Glasses from Liquids and Biopolymers. Science (New York, N.Y.), 267, 1924-1935.
https://doi.org/10.1126/science.267.5206.1924
[29]  Gibbs, J.H. and Dimarzio, E.A. (1958) Nature of the Glass Transition and the Glassy State. The Journal of Chemical Physics, 28, 373-383.
https://doi.org/10.1063/1.1744141
[30]  Stillinger (1995) A Topographic View of Supercooled Liquids and Glass Formation. Science (New York, N.Y.), 267, 1935-1939.
https://doi.org/10.1126/science.267.5206.1935
[31]  Debenedetti, P.G. and Stillinger, F.H. (2001) Supercooled Liquids and the Glass Transition. Nature, 410, 259-267.
https://doi.org/10.1038/35065704
[32]  Brüning, R. and Samwer, K. (1992) Glass Transition on Long Time Scales. Physical Review B, 46, 11318-11322.
https://doi.org/10.1103/PhysRevB.46.11318
[33]  Fulcher, G.S. (1925) Analysis of Recent Measurements of the Viscosity of Glasses. Journal of the American Ceramic Society, 8, 339-355.
https://doi.org/10.1111/j.1151-2916.1925.tb16731.x
[34]  Lillie, H.R. (1933) Viscosity-Time-Temperature Relations in Glass at Annealing Temperatures. Journal of the American Ceramic Society, 16, 619-631.
https://doi.org/10.1111/j.1151-2916.1933.tb16942.x
[35]  Robinson, H.A. (1969) Physical Properties and Structure of Silicate Glasses: I, Additive Relations in Alkali Binary Glasses. Journal of the American Ceramic Society, 52, 392-399.
https://doi.org/10.1111/j.1151-2916.1969.tb11961.x
[36]  Littleton, J.T. (1933) Critical Temperatures in Silicate Glasses. Industrial & Engineering Chemistry, 25, 748-755.
https://doi.org/10.1021/ie50283a010
[37]  Babcock, C.L. (1934) Viscosity and Electrical Conductivity of Molten Glasses. Journal of the American Ceramic Society, 17, 329-342.
https://doi.org/10.1111/j.1151-2916.1934.tb19333.x
[38]  Hoyte, A. (1965) Electrical Resistivity and Viscosity of Tektite Glass. Journal of Geophysical Research, 70, 1985-1994.
https://doi.org/10.1029/JZ070i008p01985
[39]  Lyon, K.C. (1974) Prediction of the Viscosities of Soda-Lime Silica Glasses. Journal of Research of the National Bureau of Standards A, Physics and Chemistry, 78, 497-504.
https://doi.org/10.6028/jres.078A.032
[40]  Viscardy, S. and Gaspard, P. (2003) Viscosity in Molecular Dynamics with Periodic Boundary Conditions. Physical Review E, 68, Article ID: 041204.
https://doi.org/10.1103/PhysRevE.68.041204
[41]  Giordano, D., Mangiacapra, A., Potuzak, M., Russell, J., Romano, C., Dingwell, D. and Di Muro, A. (2006) An Expanded Non-Arrhenian Model for Silicate Melt Viscosity: A Treatment for Metaluminous, Peraluminous and Peralkaline Liquids. Chemical Geology, 229, 42-56.
https://doi.org/10.1016/j.chemgeo.2006.01.007
[42]  Giordano, D., Potuzak, M., Romano, C., Dingwell, D.B. and Nowak, M. (2008) Viscosity and Glass Transition Temperature of Hydrous Melts in the System CaAl2Si2O8-CaMgSi2O6. Chemical Geology, 256, 203-215.
https://doi.org/10.1016/j.chemgeo.2008.06.027
[43]  Fluegel, A. (2007) Glass Viscosity Calculation Based on a Global Statistical Modelling Approach. Glass Technology—European Journal of Glass Science and Technology Part A, 48, 13-30.
[44]  Frenkel, J. (1946) Kinetic Theory of Liquids. Clarendon Press, Oxford, 500.
[45]  Douglas, R.W. (1949) The Flow of Glass. Journal of the Society of Glass Technology, 33, 42j.
[46]  Alzahrani, A.S. (2022) Syntheses and Characterization of Twofold Nepheline- Combeite Glass-Ceramics for Dental Application. Journal of Non Crystalline Solids, 596, Article ID: 121877.
https://doi.org/10.1016/j.jnoncrysol.2022.121877
[47]  Conradt, R. (1994) Thermodynamic Approach to Viscosity in the Glass Transition. Glass Science and Technology, 67, 304-311.
[48]  Oksoy, D., Pye, L. and Boulos, E.N. (1994) Statistical Analysis of Viscosity-Com- position Data in Glassmaking. Glastechnische Berichte, 67, 189-195.
[49]  Fluegel, A., Earl, D.A., Varshneya, A.K. and Oksoy, D. (2005) Statistical Analysis of Viscosity, Electrical Resistivity, and Further Glass Melt Properties. In: Seward III, T.P. and Vascott, T., Eds., High Temperature Glass Melt Property Database for Process Modeling, John Wiley & Sons, Inc., Hoboken, 187-256.
[50]  Ojovan, M.I. (2009) Viscosity and Glass Transition in Amorphous Oxides. Advances in Condensed Matter Physics, 2008, Article ID: 817829.
https://doi.org/10.1155/2008/817829
[51]  James, P.F. (1982) Nucleation in Glass-Forming Systems. A Review. Advances in Ceramics. Nucleation and Crystallization of Glasses, 83rd Annual Meeting of the American Ceramic Society, 14-48.
[52]  Gonzalez-Oliver, C. and James, P. (1980) Crystal Nucleation and Growth in a Na2O·2CaO·3SiO2 Glass. Journal of Non-Crystalline Solids, 38, 699-704.
https://doi.org/10.1016/0022-3093(80)90518-9
[53]  McMillan, P., Hodgson, B. and Booth, R. (1969) Mechanical Strength and Surface Microstructure of Partially Crystallised Glasses. Journal of Materials Science, 4, 1029-1038.
https://doi.org/10.1007/BF00549840
[54]  Stookey, S.D. (1962) Ceramic Body and Method of Making It. U.S. Patent 2,971,853.
[55]  Zanotto, E.D. (1991) Surface Crystallization Kinetics in Soda-Lime-Silica Glasses. Journal of NonCrystalline Solids, 129, 183-190.
https://doi.org/10.1016/0022-3093(91)90094-M
[56]  Müller, R., Zanotto, E. and Fokin, V. (2000) Surface Crystallization of Silicate Glasses: Nucleation Sites and Kinetics. Journal of Non-Crystalline Solids, 274, 208- 231.
https://doi.org/10.1016/S0022-3093(00)00214-3
[57]  Rabinovich, E.M. (1982) Cordierite Glass-Ceramics Produced By Sintering Nucleation and Crystallization in Glasses. American Ceramic Society, Columbus, 327-333.
[58]  Andrew, H. and Stookey, S.D. (1965) Glass and Methods of Devitrifying Same and Making a Capacitor Therefrom. U.S. Patent 3,195,030.
[59]  Garfinkel, H.M., Rothermel, D.L. and Stookey, S. (1962) Advances in Glass Technology. Plenum Press, New York, 404.
[60]  Stookey, S.D. (1959) Catalyzed Crystallization of Glass in Theory and Practice. Industrial & Engineering Chemistry, 51, 805-808.
https://doi.org/10.1021/ie50595a022
[61]  Boccaccini, A.R., Chen, Q., Lefebvre, L., Gremillard, L. and Chevalier, J. (2007) Sintering, Crystallisation and Biodegradation Behaviour of Bioglass?-Derived Glass- Ceramics. Faraday Discussions, 136, 27-44.
https://doi.org/10.1039/b616539g
[62]  William, J. and Mehl, R. (1939) Reaction Kinetics in Processes of Nucleation and Growth. Transactions of the Metallurgical Society of AIME, 135, 416-442.
[63]  Turnbull, D. and Fisher, J.C. (1949) Rate of Nucleation in Condensed Systems. The Journal of Chemical Physics, 17, 71-73.
https://doi.org/10.1063/1.1747055
[64]  Becker, R. (1940) On the Formation of Nuclei during Precipitation. Proceedings of the Physical Society, 52, 71-76.
https://doi.org/10.1088/0959-5309/52/1/309
[65]  De Yoreo, J.J. and Vekilov, P.G. (2003) Principles of Crystal Nucleation and Growth. Reviews in Mineralogy and Geochemistry, 54, 57-93.
https://doi.org/10.2113/0540057
[66]  Paul, A. (1982) Chemistry of Glasses. Chapman and Hall, London, 76-80.
https://doi.org/10.1007/978-94-009-5918-7
[67]  Zanotto, E.D. and Fokin, V.M. (2003) Recent Studies of Internal and Surface Nucleation in Silicate Glasses. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 361, 591-613.
https://doi.org/10.1098/rsta.2002.1150
[68]  Turnbull, D. (1950) Kinetics of Heterogeneous Nucleation. The Journal of Chemical Physics, 18, Article ID: 198203.
https://doi.org/10.1063/1.1747588
[69]  Zanotto, E.D. and James, P.F. (1985) Experimental Tests of the Classical Nucleation Theory for Glasses. Journal of Non-Crystalline Solids, 74, 373-394.
https://doi.org/10.1016/0022-3093(85)90080-8
[70]  Riella, H.G., De Borba, C. and Morais, D. (2002) Crystallization of the Nepheline Phase in Na2O-K2OAl2O3-SiO2 Glasses by Addition of Nucleating Agents. Key Engineering Materials, 230, 72-75.
https://doi.org/10.4028/www.scientific.net/KEM.230-232.72
[71]  Emrich, B.R. (1964) Technology of New Devitrified Ceramics a Literature Review (No. Afml-Tdr-64203) Air Force Materials Lab Wright-Patterson Afb Oh.
[72]  Hlavac, J. (1983) The Technology of Glass and Ceramics: An Introduction. Elsevier Scientific Publishing Company, Amsterdam.
[73]  Alzahrani, A.S. (2022) Effect of TiO2 on the Sinter Crystallization of Nepheline Glasses for Dental Application. International Journal of Applied Glass Science, 13, 610-619.
https://doi.org/10.1111/ijag.16564
[74]  Gránásy, L. and James, P. (1998) Nucleation in Oxide Glasses: Comparison of Theory and Experiment. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 454, 1745-1766.
https://doi.org/10.1098/rspa.1998.0230
[75]  Vogel, W. and Holand, W. (1982) The Development of Bioglass Ceramics for Medical Applications. AngewandteChemie International Edition in English, 26, 527-544.
https://doi.org/10.1002/anie.198705271
[76]  Cahn, J.W. (1965) Phase Separation by Spinodal Decomposition in Isotropic Systems. The Journal of Chemical Physics, 42, 93-99.
https://doi.org/10.1063/1.1695731
[77]  Ramsden, A. and James, P. (1984) The Effects of Amorphous Phase Separation on Crystal Nucleation Kinetics in Bao-SiO2 Glasses. Journal of Materials Science, 19, 1406-1419.
https://doi.org/10.1007/BF00563035
[78]  Salama, S.N., Salman, S.M. and Darwish, H. (2002) Effect of Nucleation Catalysts on Crystallisation Characteristics of Aluminosilicate Glasses. Ceramics-Silikáty, 46, 15-23.
[79]  Marotta, A., Saiello, S., Branda, F. and Buri, A. (1982) Activation Energy for the Crystallization of Glass from DDTA Curves. Journal of Materials Science, 17, 105- 108.
https://doi.org/10.1007/BF00809040
[80]  Kumar, A.H., Mcmillan, P.W. and Tummala, R.R. (1981) US Patent 4301324.
[81]  Chyung, K. (1981) Strengthening of Glass-Ceramic Laminates by Differential Densification. Advances in Ceramics, 4, 341.
[82]  Ackerman, R.G. and Karstetter, B.R. (1978) Potassium Ion-Exchange on Surface of BetaSpodumene. U.S. Patent 4,074,993.
[83]  Lambrinou, K., Van Der Biest, O., Boccaccini, A. and Taplin, D. (1996) Densification and Crystallisation Behaviour of Barium Magnesium Aluminosilicate Glass Powder Compacts. Journal of the European Ceramic Society, 16, 1237-1244.
https://doi.org/10.1016/0955-2219(96)00041-6
[84]  Clark, T.J. and Reed, J.S. (1986) Kinetic Processes Involved in the Sintering and Crystallization of Glass Powders. Journal of the American Ceramic Society, 69, 837- 846.
https://doi.org/10.1111/j.1151-2916.1986.tb07370.x
[85]  Lange, F.F. (1989) Powder Processing Science and Technology for Increased Reliability. Journal of the American Ceramic Society, 72, 3-15.
https://doi.org/10.1111/j.1151-2916.1989.tb05945.x
[86]  Prado, M., Fredericci, C. and Zanotto, E.D. (2002) Glass Sintering with Concurrent Crystallisation. Part 2. Nonisothermal Sintering of Jagged Polydispersed Particles. European Journal of Glass Science and Technology Part B Physics and Chemistry of Glasses, 43, 215-223.
[87]  Vines, R., Semmelman, J., Lee, P. and Fonvielle, F. (1958) Mechanisms Involved In Securing Dense, Vitrified Ceramics from Preshaped Partly Crystalline Bodies. Journal of the American Ceramic Society, 41, 304-309.
https://doi.org/10.1111/j.1151-2916.1958.tb12921.x
[88]  Son, Y.B., Kim, C.H., Jang, S.D., Liu, J., Sarikaya, M. and Aksay, I.A. (1994) Crystallization Behavior of Cordierite-Based Glass with Excess SiO2 and Al2O3 at Initial Stage. Japanese Journal of Applied Physics, 33, 1101-1108.
https://doi.org/10.1143/JJAP.33.1101
[89]  Holand, W., Rheinberger, V., Apel, E. and Van’t Hoen, C. (2007) Principles and Phenomena of Bioengineering with Glass-Ceramics for Dental Restoration. Journal of the European Ceramic Society, 27, 1521-1526.
https://doi.org/10.1016/j.jeurceramsoc.2006.04.101
[90]  Glass, S.J. and Ewsuk, K.G. (1997) Ceramic Powder Compaction. MRS Bulletin, 22, 24-28.
https://doi.org/10.1557/S0883769400034709
[91]  Kuczynski, G. (1949) Study of the Sintering of Glass. Journal of Applied Physics, 20, 1160-1163.
https://doi.org/10.1063/1.1698291
[92]  Tulyaganov, D.U., Ribeiro, M.J. and Labrincha, J.A. (2002) Development of Glass-Ceramics by Sintering and Crystallization of Fine Powders of Calcium- Magnesium-Aluminosilicate Glass. Ceramics International, 28, 515-520.
https://doi.org/10.1016/S0272-8842(02)00004-4
[93]  Mackenzie, J. and Shuttleworth, R. (1949) A Phenomenological Theory of Sintering. Proceedings of the Physical Society, Section B, 62, 833-852.
https://doi.org/10.1088/0370-1301/62/12/310
[94]  Murray, P., Rodgers, E.P. and Williams, A.E. (1954) Practical and Theoretical Aspects of the Hot Pressing of Refractory Oxides. Transactions of the British Ceramic Society, 53, 474-510.
[95]  Zarzycki, J. (1982) Crystallisation of Gel-Produced Glasses. Advances in Ceramics, 4, 204-217.
[96]  Hasselman, D.P.H. (1967) Approximate Theory of Thermal Stress Resistance of Brittle Ceramics Involving Creep. Journal of the American Ceramic Society, 50, 454-457.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133