全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

相干对量子热力学第一定律影响的研究
The Influence of Coherence on the First Law of Quantum Thermodynamics

DOI: 10.12677/MP.2022.126017, PP. 159-166

Keywords: 量子热力学,量子相干,热力学第一定律,Quantum Thermodynamics, The Quantum Coherent, First Law of Thermodynamics

Full-Text   Cite this paper   Add to My Lib

Abstract:

量子热力学与经典热力学在本质上存在着很大的差异,同时又相互联系。在量子热力学的研究中,量子相干起着重要作用。本文通过研究原子自发辐射过程,发现了量子相干在热力学中的奇特行为;通过研究某个特定系统,选择不同的系统初态,发现系统对外做功所产生的热,以及相干动力学对系统内能均有贡献。研究结果对进一步完善量子热力学第一定律具有重要意义。
Quantum thermodynamics and classical thermodynamics are very different in essence, but they are related to each other. Quantum coherence plays an important role in the study of quantum thermodynamics. In this paper, the peculiar behavior of quantum coherence in thermodynamics is dis-covered by studying the process of atomic spontaneous radiation. Select different initial states of the system by studying a specific system, it is found that the heat generated by the external work of the system and coherent dynamics contribute to the internal energy of the system. The results are of great significance to the further improvement of the first law of quantum thermodynamics.

References

[1]  Landauer, R. (2000) Irreversibility and Heat Generation in the Computing Process. IBM Journal of Research and Devel-opment, 5, 183-191.
https://doi.org/10.1147/rd.53.0183
[2]  Callen, H.B. (1985) Thermodynamics and an Intro-duction to the RMON Statistics. Wiley, New York.
[3]  Plischke, M. and Bergersen, B. (2006) Equilibrium Statistical Physics. 2nd Edition, Solutions Manual. World Scientific Publishing Company, Singapore.
https://doi.org/10.1142/5660
[4]  Bernardo, B.L. (2020) Unravelling the Role of Coherence in the First Law of Quantum Thermodynamics. Physical Review E, 102, Article ID: 062152.
https://doi.org/10.1103/PhysRevE.102.062152
[5]  Padmanabhan, T. (2002) Classical and Quantum Thermody-namics of Horizons in Spherically Symmetric Spacetimes. Classical and Quantum Gravity, 19, 5387-5408.
https://doi.org/10.1088/0264-9381/19/21/306
[6]  Reichl, L.E. (2016) A Modern Course in Statistical Physics. Wiley, Weinheim.
https://doi.org/10.1002/9783527690497
[7]  Bilenky, S. (2010) Introduction to the Physics of Massive and Mixed Neutrinos. Lecture Notes in Physics, Springer, Berlin.
https://doi.org/10.1007/978-3-642-14043-3
[8]  Seifert, U. (2012) Stochastic Thermodynamics, Fluctuation Theo-rems and Molecular Machines. Reports on Progress in Physics, 75, Article ID: 126001.
https://doi.org/10.1088/0034-4885/75/12/126001
[9]  Streltsov, A., Adesso, G. and Plenio, M.B. (2017) Collo-quium: Quantum Coherence as a Resource. Reviews of Modern Physics, 89, Article ID: 041003.
https://doi.org/10.1103/RevModPhys.89.041003
[10]  Geva, E. and Kosloff, R. (1992) On the Classical Limit of Quantum Thermodynamics in Finite Time. Journal of Chemical Physics, 97, 4398-4412.
https://doi.org/10.1063/1.463909
[11]  Monsel, J., Fellous-Asiani, M., Huard, B. and Auffeves, A. (2020) The En-ergetic Cost of Work Extraction. Physical Review Letters, 124, Article ID: 130601.
https://doi.org/10.1103/PhysRevLett.124.130601
[12]  Singh, L. and Zhang, W. (2022) Advancements in High Re-fractive Index Media: From Quantum Coherence in Atomic System to Deep Sub-Wavelength Coupling in Metamaterials. Chinese Optics Letters, 18, Article ID: 062401.
https://doi.org/10.3788/COL202018.062401
[13]  Kavrik, M.S., Aloni, S., Ogletree, D., et al. (2022) Investigating the Impact of Nb2O5 on Quantum Coherence via Selective Oxygen Scavenging. APS March Meeting 2022, Chicago, IL, 14-18 March 2022.
[14]  Lostaglio, M., Mueller, M.P. and Pastena, M. (2014) Stochastic Independence as a Resource in Small-Scale Thermodynamics. Physical Review Letters, 115, Article ID: 150402.
https://doi.org/10.1103/PhysRevLett.115.150402
[15]  Syu, W.C., Lee, D.S. and Lin, C.Y. (2022) Analogous Hawking Radiation and Quantum Entanglement in Two-Component Bose-Einstein Condensates: The Gapped Excitations. Physical Review D, 106, Article ID: 044016.
https://doi.org/10.1103/PhysRevD.106.044016
[16]  Mataloni, P. (2005) Photon Statistics and Coherence Theory. In: Bassani, G.F. and Liedl, G.L., Eds., Encyclopedia of Condensed Matter Physics, Academic Press, Cambridge, 280-286.
https://doi.org/10.1016/B0-12-369401-9/00611-2
[17]  Regev, O. and Schiff, L. (2012) Impossibility of a Quantum Speed-Up with a Faulty Oracle. 35th International Colloquium, ICALP 2008, Reykjavik, 7-11 July 2008, 773-781.
https://doi.org/10.1007/978-3-540-70575-8_63
[18]  Nielsen, M.A. and Chuang, I.L. (2000) Quantum Computation and Quantum Information. Cambridge University Press, Cambridge.
[19]  Alicki, R. (1979) The Quantum Open System as a Model of the Heat Engine. Journal of Physics A: Mathematical and General, 12, L103.
https://doi.org/10.1088/0305-4470/12/5/007
[20]  Wenniger, I., Thomas, S.E., Maffei, M., et al. (2022) Coher-ence-Powered Work Exchanges between a Solid-State Qubit and Light Fields.
[21]  Ivander, F., Sztrikacs, N.A. and Segal, D. (2022) Quantum Coherence-Control of Thermal Energy Transport: The V Model as a Case Study. New Journal of Physics, 24, Article ID: 103010.
https://doi.org/10.1088/1367-2630/ac9498

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133