Nanoparticles offer unique features such as a larger surface area and enhanced electrochemical performance compared to their contemporary matters. These properties make them suitable to be considered in bridging the lacunae associated with the use of bare electrodes in electrochemical sensors. Nanomaterials enhance the redox reversibility on the electrodes’ surfaces, hence, improving the reproducibility, sensitivity, and limit of detection of the electrodes/sensors. Their methods of synthesis (top-to-bottom and bottom-to-to-top) are tailored toward manipulating their sizes, shapes, and preventing their agglomeration. This review paper provides a synopsis on research done in synthesizing nanoparticles, modifying electrodes, and pinpointing the improved performances of the modified electrodes via known characteristic techniques, namely: cyclic voltammetry, differential pulse voltammetry, and electrochemical impedance spectroscopy. In addition, a perspective is given in terms of increasing the lifespan of the working electrodes and the need for non-faradaic sensors.
References
[1]
Oluwasina, O.O., Akinyele, B.P, Olusegun, S.J., Oluwasina, O.O. and Mohallem, N.D.S. (2021) Evaluation of the Effects of additives on the Properties of Starch-Based Bioplastic Film. SN Applied Sciences, 3, Article No. 421.
https://doi.org/10.1007/s42452-021-04433-7
[2]
Fay, F., Hansen, L., Hectors, S.J.C.G., Sanchez-Gaytan, B.L., Zhao, Y., Tang, J., et al. (2017) Investigating the Cellular Specificity in Tumors of a Surface-Converting Nanoparticles by Multimodal Imaging. Bioconjugate Chemistry, 28, 1413-1421.
https://doi.org/10.1021/acs.bioconjchem.7b00086
[3]
Sergey, Z. and Valentine, A. (2012) Pd2(dba)3 as a Precursor of Soluble Metal Complexes and Nanoparticles: Determination of Palladium Active Species for Catalysis and Synthesis. Organometallics, 31, 2302-2309.
https://doi.org/10.1021/om201217r
[4]
Wei, Q., Xiong, F., Tan, S., Huang, L., Lan, E.H., Dunn, B. and Mai, L. (2017) Porous One-Dimensional Nanomaterials: Design, Fabrication, and Applications in Electrochemical Energy Storage. Advanced Materials, 29, Article ID: 1602300.
https://doi.org/10.1002/adma.201602300
[5]
Li, W., Elzatahry, A., Aldhayan, D. and Zhao, D. (2018) Core-Shell Structured Titanium Dioxide nanomaterials for Solar Energy Utilization. Chemical Society Reviews, 47, 8203-8237. https://doi.org/10.1039/C8CS00443A
[6]
Wang, S. (2008) Controlled Synthesis of Dendritic Au@Pt Core-Shell Nanomaterials for Use as an Effective Fuel Cell Electrocatalyst. Nanotechnology, 20, Article ID: 025605. https://doi.org/10.1088/0957-4484/20/2/025605
[7]
Hewakuruppu, Y.L., Dombrovsky, L.A., Chen, C., Timchenko, V., Jiang, X., Baek, S. and Taylor, R.A. (2013) Plasmonic “Pump-Probe” Method to Study Semi-Transparent Nanofluids. Applied Optics, 52, Article ID: 604150.
https://doi.org/10.1364/AO.52.006041
[8]
Hanagata, N. and Morita, H (2015) Calcium Ions Rescue Human Lung Epithelial Cells from the Toxicity of Zinc Oxide Nanoparticles. The Journal of Toxicological Sciences, 40, 625-635. https://doi.org/10.2131/jts.40.625
[9]
Cheraghian, G. and Wistuba, M.P. (2020) Ultraviolet Aging Study on Bitumen Modified by a Composite of Clay and Fumed Silica Nanoparticles. Scientific Reports, 10, Article No. 11216. https://doi.org/10.1038/s41598-020-68007-0
[10]
Simoes, F.R. and Xavier, M.G. (2017) Electrochemical Sensors. In: Da Róz, A.L., Ferreira, M., Oliveira, O.N., et al., Eds., Nanoscience and Its Applications: Micro and Nanotechnologies, William Andrew, Norwich, 155-178.
https://doi.org/10.1016/B978-0-323-49780-0.00006-5
[11]
Mehta B.R and Reddy Y.J. (2015) Chapter 6—Fire and Gas Detection System. In: Mehta, B.R. and Reddy, Y.J., Eds.), Industrial Process Automation Systems: Electrochemical Sensors, Butterworth-Heinemann, Oxford, 217-235.
https://doi.org/10.1016/B978-0-12-800939-0.00005-X
[12]
Zhan, F., Liao, X., Gao, F., Qiu, W. and Wang, Q. (2017) Electroactive Crown Ester-Cu2+ Complex with in-Situ Modification at Molecular Beacon Probe Serving as a Facile Electrochemical DNA Biosensor for the Detection of CaMV 35s. Biosensors and Bioelectronics, 92, 589-595.
https://doi.org/10.1016/j.bios.2016.10.055
[13]
Tricoli, A. and Bo, R. (2020) Nanoparticle-Based Biomedical Sensors. Cluster Beam Deposition of Functional Nanomaterials and Devices. Frontiers of Nanoscience, 15, 247-269. https://doi.org/10.1016/B978-0-08-102515-4.00009-X
[14]
Ozsoz, M., Erdem, A., Kerman, K., Ozkan, D., Tugrul, B., Topcuoglu, N., Ekren, H. and Taylan, M. (2003) Electrochemical Genosensor Based on Colloidal Gold Nanoparticles for the Detection of Factor V Leiden Mutation Using Disposable Pencil Graphite Electrodes. Analytical Chemistry, 75, 2181-2187.
https://doi.org/10.1021/ac026212r
[15]
Kerman, K., Morita, Y., Takamura, Y. and Tamiya, E. (2005) Escherichia coli Single-Strand Binding Protein–DNA Interactions on Carbon Nanotube-Modified Electrodes from a Label-Free Electrochemical Hybridization Sensor. Analytical and Bioanalytical Chemistry, 381, 1114-1121.
https://doi.org/10.1007/s00216-004-3007-1
[16]
Jeong, E.H., Jung, G., Hong, C.A. and Lee, H. (2014) Gold Nanoparticle (AuNP)-Based Drug Delivery and Molecular Imaging for Biomedical Applications. Archives of Pharmaceutical Research, 37, 53-59.
https://doi.org/10.1007/s12272-013-0273-5
[17]
Tripathi, K. and Driskell, J.D. (2018) Quantifying Bound and Active Antibodies Conjugated to Gold Nanoparticles: A Comprehensive and Robust Approach to Evaluate Immobilization Chemistry. ACS Omega, 3, 8253-8259.
https://doi.org/10.1021/acsomega.8b00591
[18]
Pineda, E.G., Alcaide, F., Rodríguez Presa, M.J., Bolzán, A.E. and Gervasi, C.A. (2015) Electrochemical Preparation and Characterization of Polypyrrole/Stainless Steel Electrodes Decorated with Gold Nanoparticles. ACS Applied Materials & Interfaces, 7, 2677-2687. https://doi.org/10.1021/am507733b
[19]
Singh, S., Jain, D.V.S. and Singla, M.L. (2013) One-Step Electrochemical Synthesis of Gold-Nanoparticles Polypyrrole Composite for Application in Catechin Electrochemical Biosensor. Analytical Methods, 5, 1024-1032.
https://doi.org/10.1039/c2ay26201k
[20]
Fan, D., Li, N., Ma, H., Li, Y., Hu, L., Du, B., et al. (2016) Electrochemical Immunosensor for Detection of Prostate Specific Antigen Based on an Acid Cleavable Linker into MSN-Based Controlled Release System. Biosensors and Bioelectronics, 85, 580-586. https://doi.org/10.1016/j.bios.2016.05.063
[21]
Zhou, Y., Uzun, S.D., Watkins, N.J., Li, S., Li, W., Briseno, A.L., Carter, K.R. and Watkins, J.J. (2019) Three-Dimensional CeO2 Woodpile Nanostructures to Enhance Performance of Enzymatic Glucose Biosensors. ACS Applied Materials & Interfaces, 11, 1821-1828. https://doi.org/10.1021/acsami.8b16985
[22]
Cho, I.H., Kim, D.H. and Park, S. (2020) Electrochemical Biosensors: Perspective on Functional Nanomaterials for on-Site Analysis. Biomaterials Research, 24, Article No. 6. https://doi.org/10.1186/s40824-019-0181-y
[23]
Tortolini, C., Bollella, P., Zumpano, R., Favero, G., Mazzei, F. and Antiochia, R. (2018) Metal Oxide Nanoparticle Based Electrochemical Sensor for Total Antioxidant Capacity (TAC) Detection in Wine Samples. Biosensors, 8, Article No. 108.
https://doi.org/10.3390/bios8040108
[24]
Abdel-Raoof, A.M., Abdel-Monem, A.H., Almrasy, A.A., Mohamed, T.F., Nasr, Z.A. and Mohamed, G.F. (2020) Optimization of Highly Sensitive Screen-Printed Electrode Modified with Cerium(IV) Oxide Nanoparticles for Electrochemical Determination of Oxymetazoline Hydrochloride Using Response Surface Methodology. Journal of the Electrochemical Society, 167, Article ID: 047502.
https://doi.org/10.1149/1945-7111/ab7180
[25]
Schedin, F., Geim, A.K., Morozov, S.V., Hill, E.W., Blake, P., Katsnelson, M.I. and Novoselov, K.S. (2007) Detection of Individual Gas Molecules Adsorbed on Graphene. Nature Materials, 6, 652-655. https://doi.org/10.1038/nmat1967
[26]
Arsat, R., Breedon, M., Shafiei, M., Spizziri, P.G., Gilje, S., Kaner, R.B., Kalantar-zadeh, K. and Wlodarski, W. (2009) Graphene-Like Nanosheets for Surface Acoustic Wave Gas Sensor Applications. Chemical Physics Letters, 467, 344-347.
https://doi.org/10.1016/j.cplett.2008.11.039
[27]
Hafiz, S.M., Ritikos, R., Whitcher, T.J., Razib, N.M., Bien, D.C.S., Chanlek, N., Nakajima, H., Saisopa, T., Songsiriritthigul, P., Huang, N.M. and Rahman, S.A. (2014) A Practical Carbon Dioxide Gas Sensor Using Room-Temperature Hydrogen Plasma Reduced Graphene Oxide. Sensors and Actuators B: Chemical, 193, 692-700.
https://doi.org/10.1016/j.snb.2013.12.017
[28]
Chatterjee, S.G., Chatterjee, S., Ray, A.K. and Chakraborty, A.K. (2015) Graphene-Metal Oxide Nanohybrids for Toxic Gas Sensor: A Review. Sensors and Actuators B: Chemical, 221, 1170-1181. https://doi.org/10.1016/j.snb.2015.07.070
[29]
Zhu, C.X., Liu, M.Y., Li, X.Y., Zhang, X.H. and Chen, J.H. (2018) A New Electrochemical Aptasensor for Sensitive Assay of a Protein Based on the Dual-Signaling Electrochemical Ratiometric Method and DNA Walker Strategy. Chemical Communications, 54, 10359-10362. https://doi.org/10.1039/C8CC05829F
[30]
Sharma, G., Kumar, A., Sharma, S., Naushad, M., Dwivedi, R.P., Alothman, Z.A., Mola, G.T. (2017) Novel Development of Nanoparticles to Bimetallic Nanoparticles and Their Composites: A Review. Journal of King Saud University: Science, 31, 257-269. https://doi.org/10.1016/j.jksus.2017.06.012
[31]
Tyagi, H., Kushwaha, A., Kumar, A. and Aslam, M. (2016) A Facile pH-Controlled Citrate-Based Reduction Method for Gold Nanoparticle Synthesis at Room Temperature. Nanoscale Research Letters, 11, Article No. 362.
https://doi.org/10.1186/s11671-016-1576-5
[32]
Jeyaraj, M., Gurunathan, S., Qasim, M., Kang, M.-H. and Kim, J.-H. (2019) A Comprehensive Review on the Synthesis, Characterization, and Biomedical Application of Platinum Nanoparticles. Nanomaterials, 9, 1719.
https://doi.org/10.3390/nano9121719
[33]
Zhao, P., Li, N. and Astruc, D. (2013) State of the Art in Gold Nanoparticle Synthesis. Coordination Chemistry Reviews, 257, 638-665.
https://doi.org/10.1016/j.ccr.2012.09.002
[34]
Zobel, M., Neder, R.B. and Kimber, S.A.J. (2015) Universal Solvent Restructuring induced by Colloidal Nanoparticles. Science, 347, 292-294.
https://doi.org/10.1126/science.1261412
[35]
Liu, Y., Liu, Y., Yan, R., Gao, Y. and Wang, P. (2020) Bimetallic AuCu Nanoparticles Coupled with Multi-Walled Carbon Nanotubes as Ion-to-Electron Transducers in Solid-Contact Potentiometric Sensors. Electrochimica Acta, 331, Article ID: 135370. https://doi.org/10.1016/j.electacta.2019.135370
[36]
Hasaan Hussain, M., Abu Bakar, N.F., Najwa Mustapa, A., Low, K.-F., Hidayati Othman, N. and Adam, F. (2020) Synthesis of Various Size Gold Nanoparticles by Chemical Reduction Method with Different Solvent Polarity. Nanoscale Research Letters, 15, Article No. 140. https://doi.org/10.1186/s11671-020-03370-5
[37]
Li, L., Zhang, N., He, H., Zhang, G., Song, L. and Qiu, W. (2019) Shape-Controlled Synthesis of Pd Nanocrystals with Exposed {110} Facets and Their Catalytic Applications. Catalysis Today, 327, 28-36. https://doi.org/10.1016/j.cattod.2018.07.038
[38]
Hedkvist, O. and Toprak, M. (2015) Synthesis and Characterization of Gold Nanoparticles. Degree Project in Engineering Physics, First-Level SA104X. KTH Division of Functional Materials, Stockholm.
[39]
Li, J. and Lou, Z. (2020) Importance & Applications of Nanotechnology, Vol. 5, Chapter 2. MedDocs Publishers, Reno, 8-15.
[40]
Frimpong, R., Jang, W., Kim, J.-H. and Driskell, J.D. (2021) Rapid Vertical Flow Immunoassay on AuNP Plasmonic Paper for SERS-Based Point of Need Diagnostics. Talanta, 223, Article ID: 121739. https://doi.org/10.1016/j.talanta.2020.121739
[41]
Kim, J.U., Cha, S.H., Shin, K., Jho, J.Y. and Lee, J.C. (2004) Preparation of Gold Nanowires and Nanosheets in Bulk Block Copolymer Phases under Mild Conditions. Advanced Materials, 16, 459-464. https://doi.org/10.1002/adma.200305613
[42]
Han, L., Liu, C.-M., Dong, S.-L., Du, C.-X., Li, L.-H. and Wei, Y. (2017) Enhanced Conductivity of rGO/Ag NPs Composites for Electrochemical Immunoassay of Prostate-Specific Antigen. Biosensors and Bioelectronics, 87, 466-472.
https://doi.org/10.1016/j.bios.2016.08.004
[43]
Rhim, J.W. and Kanmani, P. (2015) Synthesis and Characterization of Biopolymer Agar Mediated Gold Nanoparticles. Materials Letters, 141, 114-117.
https://doi.org/10.1016/j.matlet.2014.11.069
[44]
Jana, N.R., Gearheart, L. and Murphy, C.J. (2001) Seed-Mediated Growth Approach for Shape-Controlled sYnthesis of Spheroidal and Rod-Like Gold Nanoparticles Using a Surfactant Template. Advanced Materials, 13, 1389-1393.
https://doi.org/10.1002/1521-4095(200109)13:18<1389::AID-ADMA1389>3.0.CO;2-F
[45]
Paul, A., Solis, J.D., Bao, K., Chang, W.S., Nauert, S., Vidgerman, L., et al. (2012) Identification of Higher-Order Long-Propagation-Length Surface Plasmon Polariton Modes in Chemically Prepared Gold Nanowires. ACS Nano, 6, 8105-8113.
https://doi.org/10.1021/nn3027112
[46]
Xue, Y. (2017) Carbon Nanotubes for Biomedical Applications. Industrial Applications of Carbon Nanotubes. In: Peng, H., Li, Q. and Chen, T., Eds., Industrial Applications of Carbon Nanotubes, Elsevier, Amsterdam, 323-346.
https://doi.org/10.1016/B978-0-323-41481-4.00011-3
[47]
Azonano (2013) Multi-Walled Carbon Nanotubes: Production, Analysis, and Application. Azonano.com.
[48]
Cho, I.H., Lee, J., Kim, J., Kang, M.-S., Paik, J.K., Ku, S., et al. (2018) Current Technologies of Electrochemical Immunosensors: Perspective on Signal Amplification. Sensors, 18, Article No. 207. https://doi.org/10.3390/s18010207
[49]
Pham, V.P., Jang, S.-H., Whang, D. and Choi, J.-Y. (2017) Direct Growth of Graphene on Rigid and Flexible Substrates: Progress, Applications, and Challenges. Chemical Society Reviews, 46, 6276-6300. https://doi.org/10.1039/C7CS00224F
[50]
Torres, T. (2010) Carbon Nanotubes and Related Structures. In: Guldi, D.M. and Martín, N., Eds., Synthesis, Characterization, Functionalization and Applications, Vol. 135. Wiley-VCH, Weinheim, 215-228.
[51]
Harris, P.J.F., Hirsch, A. and Backes, C. (2009) Carbon Nanotubes Science: Synthesis, Properties, and Applications. Vol. 102, Cambridge University Press, Germany, 210-230.
[52]
Thakur, N., Manna, P. and Das, J. (2019) Synthesis, and Biomedical Applications of Nanoceria, a Redox Active Nanoparticle. Journal of Nanobiotechnology, 17, Article No. 84. https://doi.org/10.1186/s12951-019-0516-9
[53]
Nadimpalli, N.K.V., Bandyopadhyaya, R. and Runkana, V. (2018) Thermodynamic Analysis of Hydrothermal Synthesis of Nanoparticles. Fluid Phase Equilibria, 456, 33-45. https://doi.org/10.1016/j.fluid.2017.10.002
[54]
Junais, P.M. and Govindaraj, G. (2019) Conduction and Dielectric Relaxations in PVA/PVP Hydrogel Synthesized Cerium Oxide. Materials Research Express, 6, Article ID: 045914. https://doi.org/10.1088/2053-1591/aaff14
[55]
Stelmachowski, P., Ciura, K., Indyka, P. and Kotarba, A. (2017) Facile Synthesis of Ordered CeO2 NANOROD Assemblies: Morphology and Reactivity. Materials Chemistry and Physics, 201, 139-146.
https://doi.org/10.1016/j.matchemphys.2017.08.038
[56]
Fisher, T.J., Zhou, Y., Wu, T.-S., Wang, M., Soo, Y.-L. and Cheung, C.L. (2019) Structure-Activity Relationship of Nanostructured Ceria for the Catalytic Generation of Hydroxyl Radicals. Nanoscale, 11, 4552-4561.
https://doi.org/10.1039/C8NR09393H
[57]
Jayakumar, G., Albert Irudayaraj, A. and Dhayal Raj, A. (2019) A Comprehensive Investigation on the Properties of Nanostructured Cerium Oxide. Optical and Quantum Electronics, 51, Article No. 312.
https://doi.org/10.1007/s11082-019-2029-z
[58]
Khairy, M., Mahmoud, B.G. and Banks, C.E. (2018) Simultaneous Determination of Codeine and Its Co-Formulated Drugs Acetaminophen and Caffeine by Utilizing Cerium Oxide Nanoparticles Modified Screen-Printed Electrode. Sensors and Actuators, B: Chemical, 259, 142-154. https://doi.org/10.1016/j.snb.2017.12.054
[59]
Pang, J.-H., Liu, Y., Li, J. and Yang, X.-J. (2019) Solvothermal Synthesis of Nano-CeO2 Aggregates and Its Application as a High-Efficient Arsenic Adsorbent. Rare Metals, 38, 73-80. https://doi.org/10.1007/s12598-018-1072-4
[60]
Sharmila, G., Muthukumaran, C., Saraswathi, H., Sangeetha, E., Soundarya, S. and Kumar, N.M. (2019) Green Synthesis, Characterization and Biological Activities of Nanoceria. Ceramics International, 45, 12382-12386.
https://doi.org/10.1016/j.ceramint.2019.03.164
[61]
Nourmohammadi, E., Kazemi Oskuee, R., Hasanzadeh, L., Mohajeri, M., Hashemzadeh, A., Rezayi, M. and Darroudi, M. (2018) Cytotoxic Activity of Greener Synthesis of Cerium Oxide Nanoparticles Using Carrageenan towards a WEHI 164 Cancer Cell Line. Ceramics International, 44, 19570-19575.
https://doi.org/10.1016/j.ceramint.2018.07.201
[62]
Proctor, J.E., Armada, D.M. and Vijayaraghavan, A. (2017) An Introduction to Graphene and Carbon Nanotubes. CRC Press, Boca Raton.
https://doi.org/10.1201/9781315368191
[63]
Bolotin, K.I., Sikes, K.J., Jiang, Z., Klima, M., Fudenberg, G., Hone, J., Kim, P. and Stormer, H.L. (2008) Ultrahigh Electron Mobility in Suspended Graphene. Solid State Communications, 146, 351-355. https://doi.org/10.1016/j.ssc.2008.02.024
[64]
Somani, P.R., Somani, S.P. and Umeno, M. (2006) Planar Nano-Graphenes from Camphor by CVD. Chemical Physics Letters, 430, 56-59.
https://doi.org/10.1016/j.cplett.2006.06.081
[65]
Sun, Z., Yan, Z., Yao, J., Beitler, E., Zhu, Y. and Tour, J.M. (2010) Growth of Graphene from Solid Carbon Sources. Nature, 468, 549-552.
https://doi.org/10.1038/nature09579
[66]
Guermoune, A., Chari, T., Popescu, F., Sabri, S.S., Guillemette, J., Skulason, H.S., Szkopek, T. and Siaj, M. (2011) Chemical Vapor Deposition Synthesis of Graphene on Copper with Methanol, Ethanol, and Propanol Precursors. Carbon, 49, 4204-4210.
https://doi.org/10.1016/j.carbon.2011.05.054
[67]
Dhand, C., Dwivedi, N., Loh, X.J, Ying, A., Verma, N., Beuerman, R.W., Lakshminarayanan, R. and Ramakrishna, S. (2015) Methods, and Strategies for the Synthesis of Diverse Nanoparticles and Their Applications: A Comprehensive Overview. RSC Advances, 5, 105003-105037. https://doi.org/10.1039/C5RA19388E
[68]
Maicu, M., Schmittgens, R., Hecker, D., Glob, D., Frach, P. and Gerlach, G. (2014) Synthesis and Deposition of Metal Nanoparticles by Gas Condensation Process. Journal of Vacuum Science & Technology A, 32, Article ID: 02B113.
https://doi.org/10.1116/1.4859260
[69]
Tao, A.R., Habas, S. and Yang, P. (2008) Shape Control of Colloidal Metal Nanocrystals. Small, 4, 310-325. https://doi.org/10.1002/smll.200701295
[70]
Leong, G.J., Schulze, M.C., Strand, M.B, Maloney, D., Frisco, S.L., Dinh, H.N., Pivovar, B. and Richards, R.M. (2014) Shape-Directed Platinum Nanoparticle Synthesis: Nanoscale Design of Novel Catalysts. Applied Organometallic Chemistry, 28, 1-17. https://doi.org/10.1002/aoc.3048
[71]
Riddin, T., Gerickeb, M. and Whiteley, C.G. (2010) Biological Synthesis of Platinum Nanoparticles: Effect of Initial Metal Concentration. Enzyme and Microbial Technology, 46, 501-505. https://doi.org/10.1016/j.enzmictec.2010.02.006
[72]
Martins, M., Mourato, C., Sanches, S., Noronha, J.P., Crespo, M.T.B. and Pereira, I.A.C. (2017) Biogenic Platinum, and Palladium Nanoparticles as New Catalysts for the Removal of Pharmaceutical Compounds. Water Research, 108, 160-168.
https://doi.org/10.1016/j.watres.2016.10.071
[73]
Gaidhani, S.V., Yeshvekar, R.K., Shedbalkar, U.U., Bellare, J.H. and Chopade, B.A. (2014) Bio-Reduction of Hexachloroplatinic Acid to Platinum Nanoparticles Employing Acinetobacter calcoaceticus. Process Biochemistry, 49, 2313-2319.
https://doi.org/10.1016/j.procbio.2014.10.002
[74]
Sheny, D.S., Philip, D. and Mathew, J. (2013) Synthesis of Platinum Nanoparticles Using Dried Anacardium occidentale Leaf and Its Catalytic and Thermal Applications. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 114, 267-271. https://doi.org/10.1016/j.saa.2013.05.028
[75]
Dauthal, P. and Mukhopadhyay, M. (2015) Biofabrication, Characterization, and Possible Bio-Reduction Mechanism of Platinum Nanoparticles Mediated by Agro-Industrial Waste and Their Catalytic Activity. Journal of Industrial and Engineering Chemistry, 22, 185-191. https://doi.org/10.1016/j.jiec.2014.07.009
[76]
Du, Y., Lim, B.J., Li, B.L., Jiang, Y.S., Sessler, J.L. and Ellington, A.D. (2014) Reagentless, Ratiometric Electrochemical DNA Sensors with Improved Robustness and Reproducibility. Analytical Chemistry, 86, 8010-8016.
https://doi.org/10.1021/ac5025254
[77]
Tang, Z.X. and Ma, Z.F. (2016) Ratiometric Ultrasensitive Electrochemical Immunosensor Based on Redox Substrate and Immunophore. Scientific Reports, 6, Article No. 35440. https://doi.org/10.1038/srep35440
[78]
Yu, L., Cui, X., Li, H., Lu, J., Kanga, Q. and Shen, D. (2019) A Ratiometric Electrochemical Sensor for Multiplex Detection of Cancer Biomarkers Using Bismuth as an Internal Reference and Metal Sulfide Nanoparticles as Signal Tags. Analyst, 144, 4073-4080. https://doi.org/10.1039/C9AN00775J
Wahyuni Hartati, Y., Nur Topkaya, S., Gaffar, S., Bahtia, H.H. and Cetin, A.E. (2021) Synthesis and Characterization of Nanoceria for Electrochemical Sensing applications. RSC Advances, 11, 16216-16235.
https://doi.org/10.1039/D1RA00637A
[81]
Jiang, L., Xue, Q., Jiao, C., Liu, H., Zhou, Y., Ma, H. and Yang, Q. (2018) A Non-Enzymatic Nanoceria Electrode for Non-Invasive Glucose Monitoring. Analytical Methods Journal, 10, 2151-2159. https://doi.org/10.1039/C8AY00433A
[82]
Meng, F., Miao, H., Shi, J., Hu, Z., Li, G. and Ding, Y. (2017) The Synthesis of Carbon/Cerium Oxide Composites Clusters with the Assistance of the Glucaminium-Based Surfactant and Their Electrochemical Performance in the Glucose Monitoring. Journal of Alloys and Compounds, 713, 125-131.
https://doi.org/10.1016/j.jallcom.2017.04.203
[83]
Bracamonte, M.V., Melchionna, M., Giuliani, A., Nasi, L., Tavagnacco, C., Prato, M. and Fornasiero, P. (2017) H2O2 Sensing Enhancement by Mutual Integration of Single Walled Carbon Nanohorns with Metal Oxide Catalysts: The CeO2 Case. Sensors and Actuators B: Chemical, 239, 923-932.
https://doi.org/10.1016/j.snb.2016.08.112
[84]
Huang, H. and Zhu, J.-J. (2019) The Electrochemical Applications of Rare Earth-Based Nanomaterials. Analyst, 144, 6789-6811.
https://doi.org/10.1039/C9AN01562K
[85]
Iranmanesh, T., Foroughi, M.M., Jahani, S., Shahidi Zandi, M. and Hassani Nadiki, H. (2020) Green and Facile Microwave Solvent-Free Synthesis of CeO2 Nanoparticle-Decorated CNTs as a Quadruplet Electrochemical Platform for Ultrasensitive and Simultaneous Detection of Ascorbic Acid, Dopamine, Uric Acid and Acetaminophen. Talanta, 207, Article ID: 120318.
https://doi.org/10.1016/j.talanta.2019.120318
[86]
Yang, C., Yu, S., Yang, Q., Wang, Q., Xie, S. and Yang, H. (2018) Graphene Supported Platinum Nanoparticles Modified Electrode and Its Enzymatic Biosensing for Lactic Acid. Journal of the Electrochemical Society, 165, B665-B668.
https://doi.org/10.1149/2.0341814jes
[87]
García Martíneza, R.R., Rodríguez Gonzáleza, C.A., Hernández-Paza, J.F., Jiménez Vegab, F., Camacho Montesa, H. and Olivas Armendáriza, I. (2021) Synthesis and Characterization of Carbon Aerogels Electrodes Modified by Ag2S Nanoparticles. Materials Research, 24, Article ID: e20200387.
https://doi.org/10.1590/1980-5373-mr-2020-0387
[88]
Hendawy, H.A.M., Salem, W.M., Abd-Elmonem, M.S. and Khaled, E. (2019) Nanomaterial-Based Carbon Paste Electrodes for Voltammetric Determination of Naproxen in Presence of Its Degradation Products. Journal of Analytical Methods in Chemistry, 2019, Article ID: 5381031, 9 p. https://doi.org/10.1155/2019/5381031
[89]
Yao, Y. (2019) Facile Synthesis of AuNanoparticles@Reduced Graphene Oxide Nanocomposition-Modified Electrode for Simultaneous Determination of Copper and Mercury Ions. International Journal of Electrochemical Science, 14, 3844-3855.
https://doi.org/10.20964/2019.04.06
[90]
Wang, X., Liu, G., Qi, Y., Yuan, Y., Gao, J., Luo, X. and Yang, T. (2019) Embedded Au Nanoparticles-Based Ratiometric Electrochemical Sensing Strategy for Sensitive and Reliable Detection of Copper Ions. Analytical Chemistry, 91, 12006-12013.
https://doi.org/10.1021/acs.analchem.9b02945
[91]
Khan, M.K. and MacLachlan, M.J. (2015) Polymer and Carbon Spheres with an Embedded Shell of Plasmonic Gold Nanoparticles. ACS Macro Letters, 4, 1351-1355.
https://doi.org/10.1021/acsmacrolett.5b00742
[92]
Kato, D., Kamata, T., Kato, D., Yanagisawa, H. and Niwa, O. (2016) Au Nanoparticle-Embedded Carbon Films for Electrochemical As3+ Detection with High Sensitivity and Stability. Analytical Chemistry, 88, 2944-2951.
https://doi.org/10.1021/acs.analchem.6b00136
Dorledo de Faria, R.A., Dias Heneine, L.G., Matencio, T. and Messaddeq, Y. (2019) Faradaic and Non-Faradaic Electrochemical Impedance Spectroscopy as Transduction Techniques for Sensing Applications. International Journal of Biosensors & Bioelectronics, 5, 29-31. https://doi.org/10.15406/ijbsbe.2019.05.00148
[95]
Brett, C.M.A. and Brett, A.M.O. (1993) Electrochemistry. Oxford University Press, Oxford.
[96]
Gileadi, E. (1993) Electrode Kinetics for Chemists, Chemical Engineers, and Materials Scientists. VCH Verlagsgesellschaft, Weinheim.
[97]
Said, M.I., Rageh, A.H. and Abdel-Aal, F.A.M. (2018) Fabrication of Novel Electrochemical Sensors Based on Modification with Different Polymorphs of MnO2 Nanoparticles. Application to Furosemide Analysis in Pharmaceutical and Urine samples. RSC Advances, 8, 18698-18713. https://doi.org/10.1039/C8RA02978D
[98]
Li, J., Zhang, S., Zhang, L., Zhang, Y., Zhang, H., Zhang, C., Xuan, X., Wang, M., Zhang, J. and Yuan, Y. (2021) A Novel Graphene-Based Nanomaterial Modified Electrochemical Sensor for the Detection of Cardiac Troponin I. Frontiers in Chemistry, 9, Article ID: 680593. https://doi.org/10.3389/fchem.2021.680593
[99]
Agyapong, D.A.Y., Jiang, H.J., Ni, X.J., Wu, J.W. and Zeng, H.J. (2021) Gold Nanoparticles/Thermochromic Composite Film on Screen-Printed Electrodes for Simultaneous Detection of Protein and Temperature. Journal of Biomaterials and Nanobiotechnology, 12, 7-19. https://doi.org/10.4236/jbnb.2021.122002
[100]
Wang, H., Feng, H.B. and Li, J.H. (2014) Graphene and Graphene-Like Dichalcogenides in Energy Conversion and Storage. Small, 10, 2165-2181.
https://doi.org/10.1002/smll.201303711
[101]
Tang, H., Gao, T. and Luo, Z. (2020) An Electrochemical Approach for the Determination of the Fruit Juice Freshness Using Carbon Paste Electrode Modified with ZnO Nanorods. International Journal of Electrochemical Science, 15, 2766-2775.
https://doi.org/10.20964/2020.03.37
[102]
He, X., Deng, F., Shen, T., Yang, L., Chen, D., Luo, J., Luo, X., Min, X. and Wang, F. (2019) Exceptional Adsorption of Arsenic by Zirconium Metal-Organic Framework: Engineering, Exploration, and Mechanism Insight. Journal of Colloid and Interface Science, 539, 223-234. https://doi.org/10.1016/j.jcis.2018.12.065
[103]
Naderi, N., Hashim, M., Saron, K. and Rouhi, J. (2013) Enhanced Optical Performance of Electrochemically Etched Porous Silicon Carbide. Semiconductor Science and Technology, 28, Article ID: 025011.
https://doi.org/10.1088/0268-1242/28/2/025011
[104]
McLamore, E.S., Shi, J., Jaroch, D., Claussen, J.C., Uchida, A., Jiang, Y., Zhang, W., Donkin, S.S., Banks, M.K., Buhman, K.K., Teegarden, D., Rickus, J.L. and Porterfield, D.M. (2011) A Self-Referencing Platinum Nanoparticle Decorated Enzyme-Based Microbiosensor for Real-Time Measurement of Physiological Glucose Transport. Biosensors and Bioelectronics, 26, 2237-2245.
https://doi.org/10.1016/j.bios.2010.09.041