全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Impact of Forestry Interventions on Groundwater Recharge and Sediment Control in the Ganga River Basin

DOI: 10.4236/ojf.2023.131002, PP. 13-31

Keywords: Bioengineering Measures, Ganga River Basin, Sediment Control, Water Harvesting

Full-Text   Cite this paper   Add to My Lib

Abstract:

Water related services of natural infrastructure will help to combat the risk of water crisis, and nature-based solutions involve the management of ecosystems to mimic or optimize the natural processes for the provision and regulation of water. Forested areas provide environmental stability and supply a high proportion of the world’s accessible freshwater for domestic, agricultural, industrial and ecological needs. The present work on Forestry Interventions for Ganga to rejuvenate the river is one of the steps toward the Ganga River rejuvenation programme in the country. The consequences of forestry interventions for Ganga will be determined on the basis of water quantity and water quality in the Ganga River. The study conservatively estimated the water savings and sedimentation reduction of the riverscape management in the Ganga basin using the Soil Conservation Service Curve Number (SCS-CN) & GEC, 2015 and Trimble, 1999 & CWC, 2019 methodologies, respectively. Forestry plantations and soil and moisture conservation measures devised in the programme to rejuvenate the Ganga River are expected to increase water recharge and decrease sedimentation load by 231.011 MCM·yr-1 and 1119.6 cubic m·yr-1 or 395.20 tons·yr-1, respectively, in delineated riverscape area of 83,946 km2 in Ganga basin due to these interventions. The role of trees and forests in improving

References

[1]  Ali, S., Sethy, B. K., Singh, R. K., Parandiyal, A. K., & Kumar, A. (2017). Quantification of Hydrologic Response of Staggered Contour Trenching for Horti-Pastoral Land Use System in Small Ravine Watersheds: A Paired Watershed Approach. Land Degradation & Development, 28, 1237-1252.
https://doi.org/10.1002/ldr.2517
[2]  Bons, C. A. (2018). Ganga River Basin Planning Assessment Report. Main Volume and Appendices. Deltares with AECOM and Future Water for the World Bank and the Government of India Report, 1220123-002-ZWS-0003.
[3]  Champion, H. G., & Seth, S. K. (1968). A Revised Survey of the Forest Types of India. Govt of India Publications.
[4]  Cohen-Shacham, E., Walters, G., Janzen, C., & Maginnis, S. (2016). Nature Based Solutions to Address Global Societal Challenges. IUCN.
https://doi.org/10.2305/IUCN.CH.2016.13.en
[5]  Conroy, W. J. (2001). Use of WEPP Modelling in Watershed Analysis and Timber Harvest Planning. In The ASAE Annual International Meeting (12 p). ASAE.
[6]  CPCB (2016). Bulletin, Central Pollution Control Board (Vol. 1).
[7]  CWC (2015). Integrated Hydrological Data Book (Non-Classified River Basins), 2015. Central Water Commission.
[8]  CWC (2019). Guidelines for Sediment Management in Water Resources & Hydropower Projects, 2019. MOWR.
[9]  Dwivedi, S., Mishra, S., & Tripathi, R. D. (2018). Ganga Water Pollution: A Potential Health Threat to Inhabitants of Ganga Basin. Environment International, 117, 327-338.
https://doi.org/10.1016/j.envint.2018.05.015
[10]  Ellison, D., Morris, C. E., Locatelli, B., Sheil, D., Cohen, J., Murdiyarso, D., Gutierrez, V., Noodwijk, M., Creed, I. F., Pokory, J., Gaveau, D., Spracklen, D. V., Tobella, A. B., Sands, D. C., Muys, B., Verbist B., Springgay, E., Sugandi, Y., & Sullivan C. A. (2017). Trees, Forests and Water: Cool Insights for a Hot World. Global Environmental Change, 43, 51-61.
https://doi.org/10.1016/j.gloenvcha.2017.01.002
[11]  FRI (2016). Detailed Project Report on Forestry Inventions for Ganga. Forest Research Institute (ICFRE).
[12]  Gammie, G., & de Bievre, B. (2015). Assessing Green Interventions for the Water Supply of Lima, Peru. Report for Forest Trends and CONDESAN.
[13]  GEC (2015). Report on the Ground Water Resources Estimation Committee (GEC, 2015) of Central Ground Water Board (CGWB), MOWR, RD & GR, New Delhi.
[14]  Hamilton, L. S., & King, P. N. (1983). Tropical Forested Watersheds. Hydrologic and Soils Response to Major Uses or Conversions. Westview Press.
[15]  Hawkins, R. H., Jiang, R., Woodward, D. E., Hjelmfelt, A. T., & Van Mullem, J. A. (2002). Runoff Curve Number Method: Examination of the Initial Abstraction Ratio. In Proceedings of the Second Federal Interagency Hydrologic Modelling Conference (Vol. 42, pp. 629-643).
[16]  IITM Indian Institute of Tropical Meteorology (2016). Climate Data Portal (1870-2016).
[17]  Ilstedt, U., Malmer, A, Verbeeten, E., & Murdiyarso, D. (2007). The Effect of Afforestation on Water Infiltration in the Tropics: A Systematic Review and Meta-Analysis. Forest Ecology and Management, 251, 45-51.
https://doi.org/10.1016/j.foreco.2007.06.014
[18]  Ilstedt, U., Tobella, A. B., Bazié, H. R., Bayala, J., Verbeeten, E., Nyberg, G., Sanou, J. L., Benegas, L., Murdiyarso, D., Laudon, H., Sheil, D., & Malme, A. (2016). Intermediate Tree Cover Can Maximize Groundwater Recharge in the Seasonally Dry Tropics. Scientific Reports, 6, Article No. 21930.
https://doi.org/10.1038/srep21930
[19]  IPCC (2019). Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems. Intergovernmental Panel on Climate Change (IPCC).
[20]  Jones, J. A., Wei, X., Archer, E., Bishop, K., Blanco, J. A., Ellison, D., Gush, M., McNulty, S. G., van Noordwijk, M., & Creed, I. F. (2022). Forest-Water Interactions under Global Change. In D. F. Levia, D. E. Carlyle-Moses, S. Iida, B. Michalzik, K. Nanko, & A. Tischer (Eds.), Forest-Water Interactions (Ecological Studies Book) (Series (ECOLSTUD), 240, pp. 589-624). Springer Verlag.
https://doi.org/10.1007/978-3-030-26086-6_24
[21]  Kar, S. K., Kumar, S., Sankar, M., Patra, S., Singh, R. M., Shrimali, S. S., & Ojasvi, P. R. (2022). Process-Based Modelling of Soil Erosion: Scope and Limitation in the Indian Context. Current Science, 122, 533-541.
https://doi.org/10.18520/cs/v122/i5/533-541
[22]  Kneis, D. (2015). A Lightweight Framework for Rapid Development of Object-Based Hydrological Model Engines. Environmental Modelling & Software, 68, 110-121.
https://doi.org/10.1016/j.envsoft.2015.02.009
[23]  Misra, A. K. (2013). Climate Change Impact, Mitigation and Adaptation Strategies for Agricultural and Water Resources, in Ganga Plain (India). Mitigation and Adaptation Strategies for Global Change, 18, 673-689.
https://doi.org/10.1007/s11027-012-9381-7
[24]  Mo, Z. (2007). Facilitating Reforestation for Guangxi Watershed Management in Pearl River Basin Project. In FAO Advisory Committee on Paper and Wood Products, 48th Session (pp. 11-14). Food and Agriculture Organization of the United Nations.
[25]  Narain, P., Singh, R. K., Sindhwal, N. S., & Joshie, P. (1997). Agroforestry for Soil and Water Conservation in the Western Himalayan Valley Region of India 1. Runoff, Soil and Nutrient Losses. Agroforestry Systems, 39, 175-189.
https://doi.org/10.1023/A:1005916713956
[26]  Ouyang, Y., Jin, W., Gracec, J. M., Obalum, S. E., Zipperer, W. C., & Huang, X. (2019). Estimating Impact of Forest Land on Groundwater Recharge in a Humid Subtropical Watershed of the Lower Mississippi River Alluvial Valley. Journal of Hydrology: Regional Studies, 26, Article ID: 100631.
https://doi.org/10.1016/j.ejrh.2019.100631
[27]  Owens, P. N. (2008). Sustainable Management of Sediment Resources. Vol. 4: Sediment Management at the River Basin Scale. Journal of Soils and Sediments, 8, 212-213.
https://doi.org/10.1007/s11368-008-0016-2
[28]  Rao, S. K. (2012). Soil Erosion Estimation of Godavari Basin Using Remote Sensing and Geographical Information Systems (GIS) Techniques. Ph.D. Thesis, Department of Soil and Water Engineering, Acharya N. G. Ranga Agricultural University.
[29]  Richardson, J. S., Naiman, R. J., & Bisson, P. A. (2012). How Did Fixed-Width Buffers Become Standard Practice for Protecting Freshwaters and Their Riparian Areas from Forest Harvest Practices? Freshwater Sciences, 31, 232-238.
https://doi.org/10.1899/11-031.1
[30]  Richardson, J. S., Naiman, R. J., Swanson, F. J., & Hibbs, D. E. (2005). Riparian Communities Associated with Pacific Northwest Headwater Streams: Assemblages, Processes and Uniqueness. Journal of American Water Resources Association, 41, 935-948.
https://doi.org/10.1111/j.1752-1688.2005.tb04471.x
[31]  Sandstrom, K. (1998). Can Forests “Provide” Water: Widespread Myth or Scientific Reality? Ambio, 27, 132-138.
[32]  Sharda, V. N., & Ojasvi, P. R. (2016). A Revised Soil Erosion Budget for India: Role of Reservoir Sedimentation and Land-Use Protection Measures. Earth Surface Processes and Landforms, 41, 2007-2023.
https://doi.org/10.1002/esp.3965
[33]  Singh, J. S., Rawat, Y. S., & Chaturvedi, O. P. (1984). Replacement of Oak Forest with Pine in the Himalaya Affects the Nitrogen Cycle. Nature, 311, 54-56.
https://doi.org/10.1038/311054a0
[34]  Springgay, E., Ramirez, S. C., Janzen, S., & Brito, V. V. (2019). Forest-Water Nexus: An International Perspective. Forests, 10, Article No. 915.
https://doi.org/10.3390/f10100915
[35]  Sun, D., Zhang, W., Lin, Y., Liu, Z., Shen, W., Zhou, L., & Fu, S. (2018). Soil Erosion and Water Retention Varies with Plantation Type and Age. Forest Ecology and Management, 422, 1-10.
https://doi.org/10.1016/j.foreco.2018.03.048
[36]  Symmank, L., Natho, S., Scholz, M., Raupach, K., Schroder, U., & Schulz-Zunkel, C. (2020). The Impact of Bioengineering Techniques for Riverbank Protection on Ecosystem Services of Riparian Zones. Ecological Engineering, 158, Article ID: 106040.
https://doi.org/10.1016/j.ecoleng.2020.106040
[37]  Trimble, S. W. (1999). Decreased Rates of Alluvial Sediment Storage in the Coon Creek Basin, Wisconsin, 1975-1993. Science, 285, 1244-1246.
https://doi.org/10.1126/science.285.5431.1244
[38]  Wang, S., Fu, B., Piao, S., Lu, Y., Ciais, P., Feng, X., & Wang, Y. (2016). Reduced Sediment Transport in the Yellow River Due to Anthropogenic Changes. Nature Geoscience, 9, 38-41.
https://doi.org/10.1038/ngeo2602
[39]  Ward, J. V. (1998). The Four-Dimensional Nature of Lotic Ecosystems. Journal of the North American Benthological Society, 8, 2-8.
https://doi.org/10.2307/1467397
[40]  Ward, J. V., Tockner, K., Arscott, D. B., & Claret, C. (2002). Riverine Landscape Diversity. Freshwater Biology, 47, 517-539.
https://doi.org/10.1046/j.1365-2427.2002.00893.x
[41]  WRI (2017). Global Forest Water Watch (Online). World Resource Institute (WRI).
https://www.globalforestwatch.org
[42]  Wu, F., Zhan, J., Chen, J., He, C., & Zhang, Q. (2015). Water Yield Variation Due to Forestry Change in the Head-Water Area of Heihe River Basin, Northwest China. Advances in Meteorology, 2015, Article ID: 786764.
https://doi.org/10.1155/2015/786764
[43]  WWF (2012). Assessment of Environmental Flows for the Upper Ganga Basin. WWF Report.
[44]  Zhou, T., Ren, W., Peng, S., Liang, L., Ren, S., & Wu, J. (2014). A Riverscape Transect Approach to Studying and Restoring River Systems. A Case Study from Southern China. Ecological Engineering, 65, 147-158.
https://doi.org/10.1016/j.ecoleng.2013.08.005
[45]  Zhou, Y., Ma, J., Zhang, Y., Qin, B., Jeppesen, E., Shi, K., Brookes, J. D., Spencer, R. G. M., Zhu, G., & Gao, G. (2017). Improving Water Quality in China: Environmental Investment Pays Dividends. Water Research, 118, 152-159.
https://doi.org/10.1016/j.watres.2017.04.035

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413