全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

过渡金属基电催化剂在全解水反应中的动力学调控策略
Kinetic Regulation Strategies of Transition-Metal-Based Electrocatalysts in Water Splitting Reaction

DOI: 10.12677/NAT.2022.124037, PP. 371-383

Keywords: 过渡金属基电催化剂,氢能,电催化水分解,高效动力学
Transition-Metal-Based Electrocatalysts
, Hydrogen Energy, Electrocatalytic Water Splitting,High Efficient Kinetic

Full-Text   Cite this paper   Add to My Lib

Abstract:

过渡金属(TM)基催化剂因其在水分解中的独特优势而被广泛研究。尽管目前国内外取得了重大进展,但TM基材料在电催化中的有效动力学调控策略仍处于初始阶段。通过在TM基催化剂中引入异质成分,形成特定的界面,有利于调整催化剂界面环境和化学吸附行为,从而加速动力学过程。在这篇综述中,我们全面总结了TM基电催化剂的动力学调控策略,包括界面工程、缺陷工程、掺杂工程和晶面工程,并且在全文最后概述了这一新兴领域当前面临的机遇与挑战。
Transition Metal (TM)-based catalysts are widely studied for their unique advantages in water splitting. Despite sig-nificant progress, efficient kinetic regulation strategies for TM-based materials in electrocatalysis and real-time monitoring of the dynamic evolution of reaction processes are still in the initial stages. By introducing heterogeneous components into the TM-based catalyst and forming a specific inter-face, it is beneficial to adjust the catalyst interface environment and chemical adsorption behavior, thereby accelerating the kinetic process. In this review, the kinetic regulation strategies of TM-based electrocatalysts are timely and comprehensively summarized, including interface engi-neering, defect engineering, doping engineering and crystal face engineering. Finally, we outline the current challenges and identify the opportunities facing this emerging area.

References

[1]  Zhang, L., Jang, H., Liu, H., Kim, M.G., Yang, D., Liu, S., Liu, X. and Cho, J. (2021) Sodium-Decorated Amorphous/Crystalline RuO2 with Rich Oxygen Vacancies: A Robust pH-Universal Oxygen Evolution Electrocatalyst. Angewandte Chemie International Edition, 60, 18821-18829.
https://doi.org/10.1002/anie.202106631
[2]  Zhao, H. and Yuan, Z.Y. (2021) Surface/Interface Engineering of High-Efficiency Noble Metal-Free Electrocatalysts for Energy-Related Electrochemical Reactions. Journal of Energy Chemistry, 54, 89-104.
https://doi.org/10.1016/j.jechem.2020.05.048
[3]  Liu, R., Wang, Y., Liu, D., Zou, Y. and Wang, S. (2017) Wa-ter-Plasma-Enabled Exfoliation of Ultrathin Layered Double Hydroxide Nanosheets with Multivacancies for Water Oxi-dation. Advanced Materials, 29, Article ID: 1701546.
https://doi.org/10.1002/adma.201701546
[4]  Zhang, L., Lu, C., Ye, F., Pang, R., Liu, Y., Wu, Z., Shao, Z., Sun, Z. and Hu, L. (2021) Selenic acid Etching Assisted Vacancy Engineering for Designing Highly Active Electrocatalysts to-ward the Oxygen Evolution Reaction. Advanced Materials, 33, e2007523.
https://doi.org/10.1002/adma.202007523
[5]  Wang, J., Ge, X., Liu, Z., Thia, L., Yan, Y., Xiao, W. and Wang, X. (2017) Heterogeneous Electrocatalyst with Molecular Cobalt Ions Serving as the Center of Active Sites. Journal of the American Chemical Society, 139, 1878-1884.
https://doi.org/10.1021/jacs.6b10307
[6]  Liu, Y., Cheng, H., Lyu, M., Fan, S., Liu, Q., Zhang, W., Zhi, Y., Wang, C., Xiao, C., Wei, S., Ye, B. and Xie, Y. (2014) Low Overpotential in Vacancy-Rich Ultrathin CoSe2 Nanosheets for Water Oxidation. Journal of the American Chemical Society, 136, 15670-15675.
https://doi.org/10.1021/ja5085157
[7]  Cobo, S., Heidkamp, J., Jacques, P.A., Fize, J., Fourmond, V., Guetaz, L., Jousselme, B., Ivanova, V., Dau, H., Palacin, S., Fontecave, M. and Artero, V. (2012) A Janus Cobalt-Based Catalytic Material for Electro-Splitting of Water. Nature Materials, 11, 802-807.
https://doi.org/10.1038/nmat3385
[8]  Wang, Y., Xie, C., Liu, D., Huang, X., Huo, J. and Wang, S. (2016) Nano-particle-Stacked Porous Nickel-Iron Nitride Nanosheet: A Highly Efficient Bifunctional Electrocatalyst for Overall Water Splitting. ACS Applied Materials & Interfaces, 8, 18652-18657.
https://doi.org/10.1021/acsami.6b05811
[9]  Zhang, R., Tang, C., Kong, R., Du, G., Asiri, A.M., Chen, L. and Sun, X. (2017) Al-Doped CoP Nanoarray: A Durable Water-Splitting Electrocatalyst with Superhigh Activity. Nanoscale, 9, 4793-4800.
https://doi.org/10.1039/C7NR00740J
[10]  Sun, H., Tian, C., Fan, G., Qi, J., Liu, Z., Yan, Z., Cheng, F., Chen, J., Li, C.P. and Du, M. (2020) Boosting Activity on Co4N Porous Nanosheet by Coupling CeO2 for Efficient Electrochemi-cal Overall Water Splitting at High Current Densities. Advanced Functional Materials, 30, Article ID: 1910596.
https://doi.org/10.1002/adfm.201910596
[11]  Zhang, J., Liu, Y., Xia, B., Sun, C., Liu, Y., Liu, P. and Gao, D. (2018) Facile One-Step Synthesis of Phosphorus-Doped CoS2 as Efficient Electrocatalyst for Hydrogen Evolution Reac-tion. Electrochimica Acta, 259, 955-961.
https://doi.org/10.1016/j.electacta.2017.11.043
[12]  Dong, J., Lu, Y., Tian, X., Zhang, F.Q., Chen, S., Yan, W., He, H.L., Wang, Y., Zhang, Y.B., Qin, Y., Sui, M., Zhang, X.M. and Fan, X. (2020) Genuine Active Species Generated from Fe3N Nanotube by Synergistic CoNi Doping for Boosted Oxygen Evolution Catalysis. Small, 16, e2003824.
https://doi.org/10.1002/smll.202003824
[13]  Dong, Q., Su, T., Ge, W., Ren, Y., Liu, Y., Wang, W., Wang, Q. and Dong, X. (2020) Atomic Doping and Anion Reconstructed CoF2 Electrocatalyst for Oxygen Evolution Reaction. Ad-vanced Materials Interfaces, 7, Article ID: 1901939.
https://doi.org/10.1002/admi.201901939
[14]  Wang, J., Zhang, M., Yang, G., Song, W., Zhong, W., Wang, X., Wang, M., Sun, T. and Tang, Y. (2021) Heterogeneous Bimetallic Mo-NiPx/NiSy as a Highly Efficient Electrocatalyst for Robust Overall Water Splitting. Advanced Functional Materials, 31, Article ID: 2101532.
https://doi.org/10.1002/adfm.202101532
[15]  Bai, S., Jiang,W., Li, Z. and Xiong, Y. (2015) Surface and Interface Engineering in Photocatalysis. ChemNanoMat, 1, 223-239.
https://doi.org/10.1002/cnma.201500069
[16]  Song, M., Chen, D., Yang, Y., Xiang, M., Zhu, Q., Zhao, H., Ward, L. and Chen, X.B. (2020) Crystal Facet Engineering of Sin-gle-Crystalline TiC Nanocubes for Improved Hydrogen Evolution Reaction. Advanced Functional Materials, 31, Article ID: 2008028.
https://doi.org/10.1002/adfm.202008028
[17]  Fang, L., Jiang, Z., Xu, H., Liu, L., Guan, Y., Gu, X. and Wang, Y. (2018) Crystal-Plane Engineering of NiCo2O4 Electrocatalysts towards Efficient Overall Water Splitting. Journal of Catalysis, 357, 238-246.
https://doi.org/10.1016/j.jcat.2017.11.017
[18]  Pawar, A.U., Kim, C.W., Kang, M.J. and Kang, Y.S. (2016) Crystal Facet Engineering of ZnO Photoanode for the Higher Water Splitting Efficiency with Proton Transferable Nafion Film. Nano Energy, 20, 156-167.
https://doi.org/10.1016/j.nanoen.2015.11.035
[19]  Feng, L.L., Yu, G., Wu, Y., Li, G.D., Li, H., Sun, Y., Asefa, T., Chen, W. and Zou, X. (2015) High-Index Faceted Ni3S2 Nanosheet Arrays as Highly Active and Ultrastable Electrocata-lysts for Water Splitting. Journal of the American Chemical Society, 137, 14023-14026.
https://doi.org/10.1021/jacs.5b08186
[20]  王钟, 刘家岐, 刘琛, 袁双, 王强. 过渡金属磷化物用于电解水析氢反应的研究进展[J]. 中国有色金属学报, 2021, 31(11): 3344-3361.
[21]  陈香平, 苏丽荣, 吴燕霞, 王庆涛, 任书芳. 过渡金属磷化物用于电解水析氢反应的研究进展[J]. 功能材料, 2021, 52(6): 6059-6068.
[22]  李媛媛. N掺杂MoxC/CoP复合材料的制备及电解水析氢性能研究[D]: [硕士学位论文]. 郑州: 郑州大学, 2021.
[23]  史艳梅, 张兵. 过渡金属磷化物作为高效电解水析氢及加氢催化剂[J]. 科学观察, 2020, 15(6): 59-61.
[24]  杨雪莹. 过渡金属Ni、Co、Mo化合物电极的制备及其电解水析氢性能研究[D]: [硕士学位论文]. 哈尔滨: 哈尔滨工程大学, 2018.
[25]  Hou, J., Wu, Y., Zhang, B., Cao, S., Li, Z. and Sun, L. (2019) Rational Design of Nanoarray Architectures for Electrocatalytic Water Splitting. Ad-vanced Functional Materials, 29, Article ID: 1808367.
https://doi.org/10.1002/adfm.201808367
[26]  Gao, Q., Zhang, W., Shi, Z., Yang, L. and Tang, Y. (2019) Structural Design and Electronic Modulation of Transition-Metal-Carbide Electrocatalysts toward Efficient Hydrogen Evolution. Advanced Materials, 31, Article ID: 1802880.
https://doi.org/10.1002/adma.201802880
[27]  Morales-Guio, C.G., Stern, L.A. and Hu, X. (2014) Nanostructured Hydrotreating Catalysts for Electrochemical Hydrogen Evolution. Chemical Society Reviews, 43, 6555-6569.
https://doi.org/10.1039/C3CS60468C
[28]  De Levie, R. (1999) The Electrolysis of Water. Journal of Electroana-lytical Chemistry, 476, 92-93.
https://doi.org/10.1016/S0022-0728(99)00365-4
[29]  Chu, S. and Majumdar, A. (2012) Opportunities and Chal-lenges for a Sustainable Energy Future. Nature, 488, 294-303.
https://doi.org/10.1038/nature11475
[30]  Wu, Z.P. and Zhong, C.J. (2021) Pd-Based Electrocatalysts for Oxygen Reduction and Ethanol Oxidation Reactions: Some Recent Insights into Structures and Mechanisms. Journal of Electro-chemistry, 27, 144-156.
[31]  Nie, Y., Li, L. and Wei, Z. (2015) Recent Advancements in Pt and Pt-Free Catalysts for Oxygen Reduction Reaction. Chemical Society Reviews, 44, 2168-2201.
https://doi.org/10.1039/C4CS00484A
[32]  Chang, S., Zhang, Y., Zhang, B., Cao, X., Zhang, L., Huang, X., Lu, W., Ong, C.Y.A., Yuan, S., Li, C., Huang, Y., Zeng, K., Li, L., Yan, W. and Ding, J. (2021) Conductivity Modulation of 3D-Printed Shellular Electrodes through Embedding Nanocrystalline Intermetallics into Amorphous Matrix for Ultra-high-Current Oxygen Evolution. Advanced Energy Materials, 11, Article ID: 2100968.
https://doi.org/10.1002/aenm.202100968
[33]  Qin, X., Li, Z.Q., Pan, J.B., Li, J., Wang, K. and Xia, X.H. (2021) Electrochemiluminescence Imaging Hydrogen Evolution Reaction on Single Platinum Nanoparticles Using a Bipolar Nanoelectrode Array. Journal of Electrochemistry, 27, 157-167.
[34]  Deng, S., Zhang, K., Xie, D., Zhang, Y., Zhang, Y., Wang, Y., Wu, J., Wang, X., Fan, H.J., Xia, X. and Tu, J. (2019) High-Index-Faceted Ni3S2 Branch Arrays as Bifunctional Electrocata-lysts for Efficient Water Splitting. Nano-Micro Letters, 11, Article No. 12.
https://doi.org/10.1007/s40820-019-0242-8
[35]  Vij, V., Sultan, S., Harzandi, A.M., Meena, A., Tiwari, J.N., Lee, W.G., Yoon, T. and Kim, K.S. (2017) Nickel-Based Electrocatalysts for Energy-Related Applications: Oxygen Reduction, Oxygen Evolution, and Hydrogen Evolution Reactions. ACS Catalysis, 7, 7196-7225.
https://doi.org/10.1021/acscatal.7b01800
[36]  Dong, J., Zhang, F.-Q., Yang, Y., Zhang, Y.-B., He, H., Huang, X., Fan, X. and Zhang, X.-M. (2019) (003)-Facet-Exposed Ni3S2 Nanoporous Thin Films on Nickel Foil for Efficient Water Splitting. Applied Catalysis B: Environmental, 243, 693-702.
https://doi.org/10.1016/j.apcatb.2018.11.003
[37]  Zhuang, Z.H. and Chen, W. (2021) Application of Atomically Pre-cise Metal Nanoclusters in Electrocatalysis. Journal of Electrochemistry, 27, 125-143.
[38]  Yang, H., Luo, S., Li, X., Li, S., Jin, J. and Ma, J. (2016) Con-trollable Orientation-Dependent Crystal Growth of High-Index Faceted Dendritic NiC0.2 Nanosheets as High-Performance Bifunctional Electrocatalysts for Overall Water Splitting. Journal of Materials Chemistry A, 4, 18499-18508.
https://doi.org/10.1039/C6TA07038H
[39]  Yuan, C.Z., Hui, K.S., Yin, H., Zhu, S., Zhang, J., Wu, X.L., Hong, X., Zhou, W., Fan, X., Bin, F., Chen, F. and Hui, K.N. (2021) Regulating In-trinsic Electronic Structures of Transition-Metal-Based Catalysts and the Potential Applications for Electrocatalytic Water Splitting. ACS Materials Letters, 3, 752-780.
https://doi.org/10.1021/acsmaterialslett.0c00549
[40]  Lu, Y., Zhang, H., Du, Y., Han, C., Nie, Z., Sun, Z., Rui, K., Zhu, J. and Huang, W. (2020) Structure Design of Ni-Co Hydroxide Nanoarrays with Facet Engineering on Carbon Chainlike Nanofibers for High-Efficiency Oxygen Evolution. ACS Applied Energy Materials, 3, 6240-6248.
https://doi.org/10.1021/acsaem.0c00348
[41]  Lee, M.Y., Ha, H., Cho, K.H., Seo, H., Park, S., Lee, Y.H., Kwon, S.J., Lee, T.W. and Nam, K.T. (2020) Importance of Interfacial Band Structure between the Substrate and Mn3O4 Nanocatalysts during Electrochemical Water Oxidation. ACS Catalysis, 10, 1237-1245.
https://doi.org/10.1021/acscatal.9b03831
[42]  Wang, H., Fu, W., Yang, X., Huang, Z., Li, J., Zhang, H. and Wang, Y. (2020) Recent Advancements in Heterostructured Interface Engineering for Hydrogen Evolution Reaction Electroca-talysis. Journal of Materials Chemistry A, 8, 6926-6956.
https://doi.org/10.1039/C9TA11646J
[43]  Zhao, G., Rui, K., Dou, S.X. and Sun, W. (2020) Boosting Electrochemical Water Oxidation: The Merits of Heterostructured Electrocat-alysts. Journal of Materials Chemistry A, 8, 6393-6405.
https://doi.org/10.1039/D0TA00708K
[44]  Zhang, W.Q. and Yu, B. (2020) Development Status and Prospects of Hydrogen Production by High Temperature Solid Oxide Elec-trolysis. Journal of Electrochemistry, 26, 212-229.
[45]  Zhang, B., Liu, J., Wang, J., Ruan, Y., Ji, X., Xu, K., Chen, C., Wan, H., Miao, L. and Jiang, J. (2017) Interface Engineering: The Ni(OH)2/MoS2 Heterostructure for Highly Efficient Alkaline Hydrogen Evolution. Nano Energy, 37, 74-80.
https://doi.org/10.1016/j.nanoen.2017.05.011
[46]  Xu, Q., Jiang, H., Zhang, H., Hu, Y. and Li, C. (2019) Hetero-geneous Interface Engineered Atomic Configuration on Ultrathin Ni(OH)2/Ni3S2 Nanoforests for Efficient Water Split-ting. Applied Catalysis B: Environmental, 242, 60-66.
https://doi.org/10.1016/j.apcatb.2018.09.064
[47]  Zhou, G., Wu, X., Zhao, M., Pang, H., Xu, L., Yang, J. and Tang, Y. (2021) Interfacial Engineering-Triggered Bifunctionality of CoS2/MoS2 Nanocubes/Nanosheet Arrays for High-Efficiency Overall Water Splitting. ChemSusChem, 14, 699-708.
https://doi.org/10.1002/cssc.202002338
[48]  Zhang, Z., Ji, X., Shi, J., Zhou, X., Zhang, S., Hou, Y., Qi, Y., Fang, Q., Ji, Q., Zhang, Y., Hong, M., Yang, P., Liu, X., Zhang, Q., Liao, L., Jin, C., Liu, Z. and Zhang, Y. (2017) Direct Chemical Vapor Deposition Growth and Band-Gap Characterization of MoS2/h-BN van der Waals Heterostructures on Au Foils. ACS Nano, 11, 4328-4336.
https://doi.org/10.1021/acsnano.7b01537
[49]  Li, N., Liu, X., Li, G.-D., Wu, Y., Gao, R. and Zou, X. (2017) Ver-tically Grown CoS Nanosheets on Carbon Cloth as Efficient Hydrogen Evolution Electrocatalysts. The International Journal of Hydrogen Energy, 42, 9914-9921.
https://doi.org/10.1016/j.ijhydene.2017.01.191
[50]  Gao, X., Chen, Y., Sun, T., Huang, J., Zhang, W., Wang, Q. and Cao, R. (2020) Karst Landform-Featured Monolithic Electrode for Water Electrolysis in Neutral Media. Energy & Environmental Science, 13, 174-182.
https://doi.org/10.1039/C9EE02380A
[51]  Li, J. and Zheng, G. (2017) One-Dimensional Earth-Abundant Nano-materials for Water-Splitting Electrocatalysts. Advanced Science (Weinh), 4, Article ID: 1600380.
https://doi.org/10.1002/advs.201600380
[52]  Li, X. and Wang, J. (2019) One-Dimensional and Two-Dimensional Synergized Nanostructures for High-Performing Energy Storage and Conversion. InfoMat, 2, 3-32.
https://doi.org/10.1002/inf2.12040
[53]  Lu, Q., Hutchings, G.S., Yu, W., Zhou, Y., Forest, R.V., Tao, R., Rosen, J., Yonemoto, B.T., Cao, Z., Zheng, H., Xiao, J.Q., Jiao, F. and Chen, J.G. (2015) Highly Porous Non-Precious Bime-tallic Electrocatalysts for Efficient Hydrogen Evolution. Nature Communications, 6, Article No. 6567.
https://doi.org/10.1038/ncomms7567
[54]  Li, X.X., Wang, X.T., Xiao, K., Ouyang, T., Li, N. and Liu, Z.Q. (2018) In Situ Formation of Consubstantial NiCo2S4 Nanorod Arrays toward Self-Standing Electrode for High Activity Super-capacitors and Overall Water Splitting. Journal of Power Sources, 402, 116-123.
https://doi.org/10.1016/j.jpowsour.2018.09.021
[55]  Wang, Y., Sun, Y., Yan, F., Zhu, C., Gao, P., Zhang, X. and Chen, Y. (2018) Self-Supported NiMo-Based Nanowire Arrays as Bifunctional Electrocatalysts for Full Water Splitting. Journal of Materials Chemistry A, 6, 8479-8487.
https://doi.org/10.1039/C8TA00517F
[56]  Zhou, Y., Yang, Y., Wang, R., Wang, X., Zhang, X., Qiang, L., Wang, W., Wang, Q. and Hu, Z. (2018) Rhombic Porous CoP2 Nanowire Arrays Synthesized by Alkaline Etching as Highly Active Hydrogen-Evolution-Reaction Electrocatalysts. Journal of Materials Chemistry A, 6, 19038-19046.
https://doi.org/10.1039/C8TA06462H
[57]  Wen, L., Sun, Y., Zhang, C., Yu, J., Li, X., Lyu, X., Cai, W. and Li, Y. (2018) Cu-Doped CoP Nanorod Arrays: Efficient and Durable Hydrogen Evolution Reaction Electrocatalysts at All pH Values. ACS Applied Energy Materials, 1, 3835-3842.
https://doi.org/10.1021/acsaem.8b00609
[58]  Xue, Z., Kang, J., Guo, D., Zhu, C., Li, C., Zhang, X. and Chen, Y. (2018) Self-Supported Cobalt Nitride Porous Nanowire Arrays as Bifunctional Electrocatalyst for Overall Water Splitting. Electrochimica Acta, 273, 229-238.
https://doi.org/10.1016/j.electacta.2018.04.056
[59]  Guo, Y., Guo, D., Ye, F., Wang, K., Shi, Z., Chen, X. and Zhao, C. (2018) Self-Supported NiSe2 Nanowire Arrays on Carbon Fiber Paper as Efficient and Stable Electrode for Hydrogen Evolution Reaction. ACS Sustainable Chemistry & Engineering, 6, 11884-11891.
https://doi.org/10.1021/acssuschemeng.8b02164
[60]  Qi, J., Lai, X., Wang, J., Tang, H., Ren, H., Yang, Y., Jin, Q., Zhang, L., Yu, R., Ma, G., Su, Z., Zhao, H. and Wang, D. (2015) Multi-Shelled Hollow Micro-/Nanostructures. Chemi-cal Society Reviews, 44, 6749-6773.
https://doi.org/10.1039/C5CS00344J
[61]  Lu, H.S., He, X.B., Yin, F.X. and Li, G.R. (2020) Preparations of Nick-el-Iron Hydroxide/Sulfide and Their Electrocatalytic Performances for Overall Water Splitting. Journal of Electrochemis-try, 26, 136-147.
[62]  Zhang, Q., Xiao, W., Guo, W.H., Yang, Y.X., Lei, J.L., Luo, H.Q. and Li, N.B. (2021) Macroporous Array Induced Multiscale Modulation at the Surface/Interface of Co(OH)2/NiMo Self-Supporting Electrode for Effective Overall Water Splitting. Advanced Functional Materials, 31, Article ID: 2102117.
https://doi.org/10.1002/adfm.202102117
[63]  Ding, Y.L., Kopold, P., Hahn, K., Van Aken, P.A., Maier, J. and Yu, Y. (2016) Facile Solid-State Growth of 3D Well-Interconnected Nitrogen-Rich Carbon Nanotube-Graphene Hybrid Ar-chitectures for Lithium-Sulfur Batteries. Advanced Functional Materials, 26, 1112-1119.
https://doi.org/10.1002/adfm.201504294
[64]  Yang, X., Lu, A.Y., Zhu, Y., Hedhili, M.N., Min, S., Huang, K.W., Han, Y. and Li, L.J. (2015) CoP Nanosheet Assembly Grown on Carbon Cloth: A Highly Efficient Electrocatalyst for Hydrogen Generation. Nano Energy, 15, 634-641.
https://doi.org/10.1016/j.nanoen.2015.05.026
[65]  Zhao, S., Wang, Y., Dong, J., He, C.T., Yin, H., An, P., Zhao, K., Zhang, X., Gao, C., Zhang, L., Lv, J., Wang, J., Zhang, J., Khattak, A.M., Khan, N.A., Wei, Z., Zhang, J., Liu, S., Zhao, H. and Tang, Z. (2016) Ultrathin Metal-Organic Framework Nanosheets for Electrocatalytic Oxygen Evolution. Nature Energy, 1, Article No. 16184.
https://doi.org/10.1038/nenergy.2016.184
[66]  Li, F.L., Wang, P., Huang, X., Young, D.J., Wang, H.F., Braun-stein, P. and Lang, J.P. (2019) Large-Scale, Bottom-Up Synthesis of Binary Metal-Organic Framework Nanosheets for Efficient Water Oxidation. Angewandte Chemie International Edition, 58, 7051-7056.
https://doi.org/10.1002/anie.201902588
[67]  Wang, W., Ren, X., Hao, S., Liu, Z., Xie, F., Yao, Y., Asiri, A.M., Chen, L. and Sun, X. (2017) Self-Templating Construction of Hollow Amorphous CoMoS4 Nanotube Array towards Efficient Hydrogen Evolution Electrocatalysis at Neutral Ph. Chemistry—A European Journal, 23, 12718-12723.
https://doi.org/10.1002/chem.201702923
[68]  Huang, L., Gao, G., Zhang, H., Chen, J., Fang, Y. and Dong, S. (2020) Self-Dissociation-Assembly of Ultrathin Metal-Organic Framework Nanosheet Arrays for Efficient Oxygen Evolution. Nano Energy, 68, Article ID: 104296.
https://doi.org/10.1016/j.nanoen.2019.104296
[69]  Zhu, Y., Liu, X., Jin, S., Chen, H., Lee, W., Liu, M. and Chen, Y. (2019) Anionic Defect Engineering of Transition Metal Oxides for Oxygen Reduction and Evolution Reactions. Journal of Materials Chemistry A, 7, 5875-5897.
https://doi.org/10.1039/C8TA12477A
[70]  Zhang, H. and Lv, R. (2018) Defect Engineering of Two-Dimensional Materials for Efficient Electrocatalysis. Journal of Materiomics, 4, 95-107.
https://doi.org/10.1016/j.jmat.2018.02.006
[71]  Wang, Y., Han, P., Lv, X., Zhang, L. and Zheng, G. (2018) Defect and Interface Engineering for Aqueous Electrocatalytic CO2 Reduction. Joule, 2, 2551-2582.
https://doi.org/10.1016/j.joule.2018.09.021
[72]  Yan, D., Li, Y., Huo, J., Chen, R., Dai, L. and Wang, S. (2017) Defect Chemistry of Nonprecious-Metal Electrocatalysts for Oxygen Reactions. Advanced Materials, 29, Article ID: 1606459.
https://doi.org/10.1002/adma.201606459
[73]  Tang, C. and Zhang, Q. (2017) Nanocarbon for Oxygen Reduction Electrocatalysis: Dopants, Edges, and Defects. Advanced Materials, 29, Article ID: 1604103.
https://doi.org/10.1002/adma.201604103
[74]  Schaub, R., Wahlstrom, E., Ronnau, A., Lagsgaard, E., Stensgaard, I. and Besenbacher, F. (2003) Oxygen-Mediated Diffusion of Oxygen Vacancies on the TiO2(110) Surface. Science, 299, 377-379.
https://doi.org/10.1126/science.1078962
[75]  Ouyang, C., Wang, X. and Wang, S. (2015) Phosphorus-Doped CoS2 Nanosheet Arrays as Ultra-Efficient Electrocatalysts for the Hydrogen Evolution Reaction. Chemical Communica-tions, 51, 14160-14163.
https://doi.org/10.1039/C5CC05541E
[76]  Li, H., Tsai, C., Koh, A.L., Cai, L., Contryman, A.W., Fragapane, A.H., Zhao, J., Han, H.S., Manoharan, H.C., Abild-Pedersen, F., Norskov, J.K. and Zheng, X. (2016) Corrigendum: Activat-ing and Optimizing MoS2 Basal Planes for Hydrogen Evolution through the Formation of Strained Sulphur Vacancies. Nature Materials, 15, 84-53.
https://doi.org/10.1038/nmat4564
[77]  Xu, L., Jiang, Q., Xiao, Z., Li, X., Huo, J., Wang, S. and Dai, L. (2016) Plasma-Engraved Co3O4 Nanosheets with Oxygen Vacancies and High Surface Area for the Oxygen Evolution Reaction. Angewandte Chemie International Editio, 55, 5277-5281.
https://doi.org/10.1002/anie.201600687
[78]  Cai, Z.X., Wang, Z.L., Xia, Y.J., Lim, H., Zhou, W., Taniguchi, A., Ohtani, M., Kobiro, K., Fujita, T. and Yamauchi, Y. (2021) Tailored Catalytic Nanoframes from Metal-Organic Frame-works by Anisotropic Surface Modification and Etching for the Hydrogen Evolution Reaction. Angewandte Chemie In-ternational Edition, 60, 4747-4755.
https://doi.org/10.1002/anie.202010618
[79]  Li, X., Liu, H., Sun, Y., Zhu, L., Yin, X., Sun, S., Fu, Z., Lu, Y., Wang, X. and Cheng, Z. (2020) High Oxygen Evolution Activity of Tungsten Bronze Oxides Boosted by Anchoring of Co2+ at Nb5+ Sites Accompanied by Substantial Oxygen Vacancy. Advanced Science, 7, Article ID: 2002242.
https://doi.org/10.1002/advs.202002242

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413