全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

全球气候变化的相对论模型与计算实例
Relativistic Model of Global Climate Change and Its Calculation Examples

DOI: 10.12677/MP.2022.126019, PP. 179-194

Keywords: 极值加速度,相对论物质波,加速度卷波,Ultimate Acceleration, Relativistic Matter Wave, Acceleration-Roll Wave

Full-Text   Cite this paper   Add to My Lib

Abstract:

与极值速度c类似,存在极值加速度β,任何物体的加速度都不能超过这个极限β。太阳系中的极值加速度β = 2.961520e+10 (m/s/s)。因为这个极值加速度是一个大数字,任何与β相关的效应都很容易测试,包括量子引力测试,参见本作者的综述文章viXra: 2205.0053。本文提出了一种将极值加速度与量子理论联系起来的方法,提出了一种行星尺度的相对论物质波模型。这个模型计算出了太阳黑子周期为10.93年。通过拟合观测数据得到耦合系数,计算出了全球气候变化的大尺度周期为100.6千年,与Milankovitch周期一致;估算出过去一个世纪全球气温上升了0.8℃。
In analogy with the ultimate speed c, there is an ultimate acceleration β, nobody’s acceleration can exceed this limit β, in the solar system, β = 2.961520e+10 (m/s/s). Because this ultimate acceleration is large, any effect related to β will become easy to test, including quantum gravity tests, see the author’s article viXra: 2205.0053 (in English). In this paper, an approach is put forward to connect the ultimate acceleration with quantum theory, the model of planetary relativistic matter waves is proposed. Using this approach, the sunspot cycle is calculated to be 10.93 years. By fitting observed data to obtain the coupling constant, the large-scale cycle of global climate change is calculated to be 100.6 thousand years, which is consistent with the Milankovitch cycle; this model estimates that the global temperature has risen by 0.8?C for the past century.

References

[1]  Marletto, C. and Vedral, V. (2017) Gravitationally Induced Entanglement between Two Massive Particles Is Sufficient Evidence of Quantum Effects in Gravity. Physical Review Letters, 119, Article ID: 240402.
https://doi.org/10.1103/PhysRevLett.119.240402
[2]  Guerreiro, T. (2020) Quantum Effects in Gravity Waves. Classical and Quantum Gravity, 37, Article ID: 155001.
https://doi.org/10.1088/1361-6382/ab9d5d
[3]  Carlip, S., Chiou, D., Ni, W. and Woodard, R. (2015) Quantum Gravity: A Brief History of Ideas and Some Prospects, International Journal of Modern Physics D, 24, Article ID: 1530028.
https://doi.org/10.1142/S0218271815300281
[4]  de Broglie, L. (1922) CRAS, 175: 811-813, Translated in 2012 by H. C. Shen in Selected Works of de Broglie.
[5]  de Broglie, L. (1923) Waves and Quanta. Nature, 112, 540.
https://doi.org/10.1038/112540a0
[6]  de Broglie, L. (1925) Recherches sur la théorie des Quanta, Translated in 2004 by A. F. Kracklauer as De Broglie, Louis, on the Theory of Quanta.
https://doi.org/10.1051/anphys/192510030022
[7]  NASA. https://solarscience.msfc.nasa.gov/interior.shtml
[8]  NASA. https://nssdc.gsfc.nasa.gov/planetary/factsheet/marsfact.html
[9]  Ryden, B. (2019) Introduction to Cosmology. 2nd Edition, Cambridge University Press, Cambridge.
[10]  Valencia, D., Sasselov, D.D. and O’Connell, R.J. (2007) Radius and Structure Models of the First Super-Earth Planet. The Astrophysical Journal, 656, 545-551.
https://doi.org/10.1086/509800
[11]  Valencia, D., Sasselov, D.D. and O’Connell, R.J. (2007) Detailed Models of Super-Earths: How Well Can We Infer Bulk Properties? The Astrophysical Journal, 665, 1413-1420.
https://doi.org/10.1086/519554
[12]  Guillot, T. and Showman, A.P. (2002) Evolution of “51Pegasusb-Like” Planets. Astronomy & Astrophysics, 385, 156-165.
https://doi.org/10.1051/0004-6361:20011624
[13]  Guillot, T. and Showman, A.P. (2002) Atmospheric Circulation and Tides of “51Pegasusb-Like” Planets. Astronomy & Astrophysics, 385, 166-180.
https://doi.org/10.1051/0004-6361:20020101
[14]  Fletcher, L.N., Kaspi, Y., Guillot, T. and Showman, A.P. (2020) How Well Do We Understand the Belt/Zone Circulation of Giant Planet Atmospheres? Space Science Reviews, 216, Article No. 30.
https://doi.org/10.1007/s11214-019-0631-9
[15]  Kaspi, Y., Galanti, E., Showman, A.P., Stevenson, D.J., Guillot, T., Iess, L. and Bolton, S.J. (2020) Comparison of the Deep Atmospheric Dynamics of Jupiter and Saturn in Light of the Juno and Cassini Gravity Measurements. Space Science Reviews, 216, Article No. 84.
https://doi.org/10.1007/s11214-020-00705-7
[16]  Orbital Debris Program Office (2018) History of On-Orbit Satellite Fragmentations. 15th Edition, National Aeronautics and Space Administration, Washington DC.
[17]  Mulrooney, M. (2007) The NASA Liquid Mirror Telescope. Orbital Debris Quarterly News, April, v11i2.
[18]  Orbital Debris Program Office (2007) Chinese Anti-Satellite Test Creates Most Severe Orbital Debris Cloud in History. Orbital Debris Quarterly News, April, v11i2.
[19]  Manis, A., Matney, M., Vavrin, A., Gates, D., Seago, J. and Anz-Meador, P. (2021) Comparison of the NASA ORDEM 3.1 and ESA MASTER-8 Models. Orbital Debris Quarterly News, Sept., v25i3.
[20]  Wright, D. (2007) Space Debris. Physics Today, 10, 35-40.
https://doi.org/10.1063/1.2800252
[21]  Tang, Z.-M., Ding, Z.-H., Dai, L.-D., Wu, J. and Xu, Z.-W. (2017) The Statistics Analysis of Space Debris in Beam Parking Model in 78? North Latitude Regions. Space Debris Research, 17, 1-7.
[22]  Tang, Z.M., Yang, S., Dai, L.D., et al. (2018) The Statistics Analysis of Space Debris in Beam Parking Model Based on the Arctic 500 MHz Incoherent Scattering Radar. Chinese Journal of Radio Science, 25, 537-542.
[23]  Tang, Z.M., Ding, Z.H., Dai, L.D., et al. (2018) Comparative Analysis of Space Debris Gaze Detection Based on the Two Incoherent Scattering Radars Located at 69N and 78N. Chinese Journal of Space Science, 38, 73-78.
[24]  Ding, Z.-H., Yang, S., Jiang, H., et al. (2018) The Data Analysis of the Space Debris Observation by the Qujing Incoherent Scatter Radar. Space Debris Research, 18, 12-19.
[25]  Yang, S., Ding, Z.H., Xu, Z.W. and Wu, J. (2018) Statistical Analysis on the Space Posture, Distribution, and Scattering Characteristic of Debris by Incoherent Scattering Radar in Qujing. Chinese Journal of Radio Science, 33, 648-654.
[26]  Cox, N. (2001) Allen’s Astrophysical Quantities. 4th Edition, Springer-Verlag, Berlin.
https://doi.org/10.1007/978-1-4612-1186-0
[27]  Schneider, S.E. and Arny, T.T. (2018) Pathways to Astronomy. 5th Edition, McGraw-Hill Education, London.
[28]  Cui, H.Y. (2020) Relativistic Matter Wave and Its Explanation to Superconductivity: Based on the Equality Principle. Modern Physics, 10, 35-52.
https://doi.org/10.12677/MP.2020.103005
[29]  Cui, H.Y. (2021) Relativistic Matter Wave and Quantum Computer. Kindle Ebook.
[30]  Clet Lab (2022) Clet: A C Compiler. https://drive.google.com/file/d/1OjKqANcgZ-9V56rgcoMtOu9w4rP49sgN/view?usp=sharing
[31]  Atmosphere of Earth. https://en.wikipedia.org/wiki/Atmosphere_of_Earth

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133