全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Designing Artemisinins with Antimalarial Potential, Combining Molecular Electrostatic Potential, Ligand-Heme Interaction and Multivariate Models

DOI: 10.4236/cc.2023.111001, PP. 1-23

Keywords: Artemisinins, Antimalarial Potential, Molecular Electrostatic Potential, Ligand-Heme Interaction, Multivariate Models

Full-Text   Cite this paper   Add to My Lib

Abstract:

Artemisinins tested against W-2 strains of malaria falciparum are investigated with molecular electrostatic potential (MEP), in an attempt to identify key features of the compounds that are necessary for their activities, as well as to investigate likely interactions with the receptor in a biological process and to use that information to propose new molecules. In order to discover the best geometry involving the ligand-receptor complexes (heme) studied and help in the proposition of the new derivatives, molecular simulations of interactions between the most negative charged region around the peroxide and heme locates (the ones around the Fe2+ ion) were carried out. In addition, PCA (principal components analysis), HCA (hierarchical cluster analysis), SDA (stepwise discriminant analysis), and KNN (K-nearest neighbor) multivariate models were employed to investigate which descriptors are responsible for the classification between the higher and lower antimalarial activity of the compounds, and also this information was used to propose new potentially active molecules. The information accumulated in studies of MEP, molecular docking, and multivariate analysis supported the proposal of new structures with potential antimalarial activities. The multivariate models constructed were applied to the new structures and indicated numbers 19 and 20 as the most prominent for syntheses and biological assays.

References

[1]  World Malaria Report (2021)
https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2021
[2]  Tse, E.G., Korsik, M. and Todd, M.H. (2019) The Past, Present and Future of Anti-Malarial Medicines. Malaria Journal, 18, Article No. 93.
https://malariajournal.biomedcentral.com/track/pdf/10.1186/s12936-019-2724-z.pdf
https://doi.org/10.1186/s12936-019-2724-z
[3]  Qinghaosu Antimalarial Coordinating Research Group (1979) Antimalarial Studies on Qinghaossu. Chinese Medical Journal, 92, 811-816.
[4]  Li, Y. (2012) Qinghaosu (Artemisinin): Chemistry and Pharmacology. Acta Pharmacologica Sinica, 33, 1141-1146.
https://www.nature.com/articles/aps2012104
https://doi.org/10.1038/aps.2012.104
[5]  Chang, Z. (2016) The Discovery of Qinghaosu (Artemisinin) as an Effective Anti-Malaria Drug: A Unique China Story. Science China Life Sciences, 59, 81-88.
https://link.springer.com/article/10.1007/s11427-015-4988-z
https://doi.org/10.1007/s11427-015-4988-z
[6]  O’Neill, P.M., Barton, V.E. and Ward, S.A. (2010) The Molecular Mechanism of Action of Artemisinin—The Debate Continues. Molecules, 15, 1705-1721.
https://doi.org/10.3390/molecules15031705
[7]  Denisov, E.T. and Denisova, T.G. (2011) Hydroxyl Mechanism of the Antimalarial Effect of Artemisinin and Its Analogs. Russian Chemical Bulletin, International Edition, 60, 1421-1435.
https://doi.org/10.1007/s11172-011-0213-9
[8]  Rawe, S.L. (2020) Artemisinin and Artemisinin-Related Agents, In: Patrick, G.L., Ed., Antimalarial Agents Design and Mechanism of Action, Elsevier, London, 99-132.
https://doi.org/10.1016/B978-0-08-101210-9.00004-4
[9]  Wang, J., Zhang, C.-J., Chia, W.N., Loh, C.C.Y., Li, Z., Lee, Y.M., He, Y.; Yuan, L.-X., Lim, T.K., Liu, M., Liew, C.X., Lee, Y.Q., Zhang, J.Z., Lu, N., Lim, C.T., Hua, Z.C., Liu, B., Shen, H.-M., Tan, K.S.W. and Lin, Q. (2015) Haem-Activated Promiscuous Targeting of Artemisinin in Plasmodium falciparum. Nature Communications, 6, Article No. 10111.
https://doi.org/10.1038/ncomms10111
[10]  Tilley, L., Straimer, J., Gnädig, N.F., Ralph, S.A. and Fidock, D.A. (2016) Artemisinin Action and Resistance in Plasmodium falciparum. Trends Parasitology, 32, 682-696.
https://doi.org/10.1016/j.pt.2016.05.010
[11]  Tam, D.N.H., Tawfk G.M., El-Qushayri, A.E., Mehyar, G.M., Istanbuly, S., Karimzadeh, S., Tu, V.L., Tiwari, R., Dat, T.V., Nguyen, P.T.V., Hirayama, K. and Tien Huy, N.T. (2020) Correlation between Anti-Malarial and Anti-Haemozoin Activities of Anti-Malarial Compounds. Malaria Journal, 19, Article No. 298.
https://doi.org/10.1186/s12936-020-03370-x
[12]  Jahan, M., Leon, F., Fronczek, F.R., Elokely, K.M, Rimoldi, J., Khan, S.I. and Avery, M.A. (2021) Structure-Activity Relationships of the Antimalarial Agent Artemisinin 10. Synthesis and Antimalarial Activity of Enantiomers of rac-5β-Hydroxy-D-Secoartemisinin and Analogs: Implications Regarding the Mechanism of Action. Molecules, 26, Article No. 4163.
https://www.mdpi.com/1420-3049/26/14/4163
https://doi.org/10.3390/molecules26144163
[13]  Shandilya, A., Chacko, S., Jayaram, B. and Ghosh, I. (2013) A Plausible Mechanism for the Antimalarial Activity of Artemisinin: A Computational Approach. Scientific Reports, 3, Article No. 2513.
https://www.nature.com/articles/srep02513
https://doi.org/10.1038/srep02513
[14]  Mok, S., Ashley, E.A., Ferreira, P.E., Zhu, L., Lin, Z., Yeo, T., Chotivanich, K., Imwong, M., Pukrittayakamee, S., Dhorda, M., Nguon, C., Lim, P., Amaratunga, C., Suon, C., Hien, T.T., Htut, Y., Faiz, M.A., Marie A. Onyamboko, M.A., Mayxay, M., Newton, P.N., Tripura, R., Woodrow, C.J., Miotto, O., Kwiatkowski, D.P., Nosten, F., Day, N.P.J, Preiser, P.R., White, N. J., Dondorp A.M., Fairhurst, R.M. and Bozdech, Z. (2014) Population Transcriptomics of Human Malaria Parasites Reveals the Mechanism of Artemisinin Resistance. Science, 347, 431-435.
https://doi.org/10.1126/science.1260403
[15]  Mbengue, A., Bhattacharjee, S., Pandharkar, T., Liu, H., Estiu, G., Stahelin, R.V., Rizk, S.S, Njimoh, D.L., Ryan, Y., Chotivanich, K., Nguon, C., Ghorbal, M., Lopez-Rubio, J.-J., Pfrender, M., Emrich, S., Mohandas, N., Dondorp, A.M., Wiest, O. and Haldar, K. (2015) A Molecular Mechanism of Artemisinin Resistance in Plasmodium falciparum Malária. Nature, 520, 683-687.
https://www.nature.com/articles/nature14412.pdf
https://doi.org/10.1038/nature14412
[16]  Bernardinelli, G., Jefford, C.W., Maric, D., Thoson, C. and Weber, J. (1994) Computational Studies of the Structures and Properties of Potential Antimalarial Compounds Based on the 1,2,4-Trioxane Ring Structure. I. Artemisinin-Like Molecules. International Journal Quantum Chemistry Quantum Biology Symposium, 21, 117-131.
https://doi.org/10.1002/qua.560520710
[17]  Roothaan, C.C.J. (1951) New Developments in Molecular Orbital Theory. Review of Modern Physics, 23, 69-89.
https://doi.org/10.1103/RevModPhys.23.69
[18]  Binkley, J.S., Pople, J.A. and Hehre, W.J. (1980) Self-Consistent Molecular Orbital Methods. 2.1. Small Split-Valence Basis Sets for First-Row Elements. Journal of the American Chemical Society, 102, 939-947.
https://doi.org/10.1021/ja00523a008
[19]  Lin, A.J., Lee, M. and Klayman, D.L. (1989) Antimalarial Activity of New Water-Soluble Dihydroartemisinin Derivatives. 2. Stereospecificity of the Ether Side Chain. Journal of Medicinal Chemistry, 32, 1249-1252.
https://doi.org/10.1021/jm00126a017
[20]  Bossi, A, Venugopalan, B., Gerpe LD, Yeh, H.J.C., Flippen-Anderson, J.L., Buchs, P., Luo, X.D., Milhous, W. and Peters, W., (1988) Arteether, a New Antimalarial Drug: Synthesis and Antimalarial Properties. Journal of Medicinal Chemistry, 31, 645-650.
https://doi.org/10.1021/jm00398a026
[21]  (1997) GaussView 1.0. Gaussian Inc., Pittsburg.
[22]  Pinheiro, J.C., Ferreira, M.M.C. and Romero, O.A.S. (2001) Antimalarial Activity Dihydroartemisinin Derivatives against P. falciparum Resistant to Mefloquine: A Quantum Chemical and Multivariate Study. Journal of Molecular Structure: Theochem, 572, 35-44.
https://doi.org/10.1016/S0166-1280(01)00522-X
[23]  Pinheiro, J.C, Kiralj, R., Ferreira, M.M.C. and Romero, O.A.S. (2003) Artemisinin Derivatives with Anti-malarial Activity against Plasmodium falciparum Designed with the Aid of Quantum Chemical and Partial Least Squares Methods. QSAR Combinatorial Science, 22, 830-842.
https://doi.org/10.1002/qsar.200330829
[24]  Leban, I., Golic, L. and Japelj, M. (1988) Crystal and Molecular Structure of Qinghaosu: A Redetermination. Acta Pharmaceutica Jugoslavica, 38, 71-77.
[25]  Lisgarten, J.N., Potter, B.S., Bantuzeko, C. and Palmer, R.A. (1998) Structure, Absolute Configuration, and Conformation on the Antimalarial Compound: Artemisinin. Journal of Chemical Crystallography, 28, 539-543.
https://doi.org/10.1023/A:1023244122450
[26]  Frisch, A. and Frisch, M.J. (1998) Gaussian 98 User’s Reference, Revision A.7. Gaussian, Inc., Pittsburg.
[27]  Todeschini, R. and Consonni V. (2009) Molecular Descriptors for Chemoinformatics. Wiley-VCH, Weinheim.
[28]  ChemPlus: Modular Extensions to HyperChem Release 8.06 (2008) Molecular Modeling for Windows. Hyperchem, Inc., Gainesville.
[29]  Chirlian, L.E. and Francl, M.M. (1987) Atomic Charges Derived from Electrostatic Potentials: A Detailed Study. Journal of Computational Chemistry, 8, 894-905.
https://doi.org/10.1002/jcc.540080616
[30]  Williams, D.E. and Yan, J.M. (1998) Point-Charge Models for Molecules Derived from Least Squares Fitting of the Electric Potential. Advances in Atomic and Molecular Physics, 23, 87-130.
https://doi.org/10.1016/S0065-2199(08)60106-2
[31]  Singh, H.C. and Kollman, P.A. (1984) An Approach to Computing Electrostatic Charges for Molecules. Journal of Computational Chemistry, 5, 129-145.
https://doi.org/10.1002/jcc.540050204
[32]  Politzer, P. and Murray, J.S. (2021) Electrostatic Potentials at the Nuclei of Atoms and Molecules. Theoretical Chemistry Accounts, 140, Article No. 7.
https://doi.org/10.1007/s00214-020-02701-0
[33]  Politzer, J., Laurence, P.R. and Jayasuriya, K. (1985) Molecular Electrostatic Potentials: An Effective Tool for the Elucidation of Biochemical Phenomena. Environmental Health Perspectives, 61, 191-202.
https://doi.org/10.1289/ehp.8561191
[34]  Flukiger, P., Luth, H.P., Portmann, S. and Weber, J. (2000-2001) MOLEKEL. Swiss Center for Scientific Computing, Mano.
[35]  Gohlke, H. (2012) Protein-Ligand Interactions. In: Mannhold, R., Kubinyi, H. and Folkers, G., Eds., Methods and Principles in Medicinal Chemistry, Wiley-VCH, Winheim, 331 p.
[36]  Náray-Szabó, G. (2014) Protein Modelling. Springer, Berlin.
https://doi.org/10.1007/978-3-319-09976-7
[37]  Sethi, A., Joshi, K., Sasikala, K. and Alvala, M. (2019) Molecular Docking in Modern Drug Discovery: Principles and Recent Applications. In: Gaitonde, V., Karmakar, P. and Trivedi, A., Eds., Drug Discovery and Development—New Advances, IntechOpen, London, 27-48.
https://doi.org/10.5772/intechopen.85991
[38]  Pinzi, L. and Rastelli, G. (2019) Molecular Docking: Shifting Paradigms in Drug Discovery. International Journal of Molecular Sciences, 20, 4331.
https://doi.org/10.3390/ijms20184331
[39]  Stanzione, F., Giangreco, I. and Cole, J.C. (2021) Use of Molecular Docking Computational Tools in Drug Discovery. In: Witty, D.R. and Cox, B., Eds., Progress in Medicinal Chemistry, Elsevier, New York, 273-343.
[40]  Vojtechovsky, J., Chu, K., Berendzen, J., Sweet, R.M. and Schlichting, I. (1999) Crystal Structures of Myoglobin-Ligand Complexes at Near-Atomic Resolution. Biophysical Journal, 77, 2153-2174.
https://doi.org/10.1016/S0006-3495(99)77056-6
[41]  Araújo, J.Q., Car-neiro, J.M., Araújo, M.T., Laite, G.H. and Taranto, A.G. (2008) Interaction between Artemisinin and Heme. A Density Functional Theory Study of Structures and Interaction Energies. Bioorganic & Medicinal Chemistry, 16, 5021-5029.
https://doi.org/10.1016/j.bmc.2008.03.033
[42]  Morris, G.M., Huey, R., Hart, W.E., Lindstron, W., Gillet, A., Goodsell, D. and Olson. A.J. (2009) Autodck 4.2 Program. The Scripps Research Institute, Department of Molecular Biology, MB-5, La Jolla.
[43]  Trott, O. and Olson, A.J. (2009) Software News and Update AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. Journal of Computational Chemistry, 31, 455-461.
https://doi.org/10.1002/jcc.21334
[44]  Varmuza, K. (2018) Methods for Multivariate Data Analysis. In: Engel, T. and Gasleiger, J., Eds. Chemoinformatics—Basic Concepts and Methods, Wiley-VCH, Weinheim, 399-437.
https://doi.org/10.1002/9783527816880.ch11_01
[45]  Santos, M.A., Oliveira, L.F., Figueiredo, A.F., Gil, F.S., Farias, M.S., Bitencourt, H.R., Lobato, J.R.B., Ferreira, R. D.P., Alves, S.S.S., Aquino, E.L.C. and Ciríaco-Pinheiro, J. (2020) Molecular Electrostatic Potential and Chemometric Techniques as Tools to Design Bioactive Compounds. In: Stefaniu, A., Rasul, A. and Hussain, G., Eds., Cheminformatics and Its Applications, Intechopen, London, 1-28.
[46]  Barbosa, J.P., Ferreira, J.E.V., Figueiredo, A.F., Almeida, R.C.O., Silva, O.P.P., Carvalho, J.R.C., Cristino, M.G.G., Ciríaco-Pinheiro, J., Vieira, J.L.F. and Serra, R.T.A. (2011) Molecular Modeling and Chemometric Study of Anticancer Derivatives of Artemisinin. Journal of the Serbian Chemical Society, 76, 1263-1282.
https://doi.org/10.2298/JSC111227111B
[47]  Cristino, M.G.G., Meneses, C.C.F., Soeiro, M.M., Ferreira, J.E.V., Figueiredo, A.F., Barbosa, J.P., Almeida, R.C.O., Pinheiro, J.C. and Pinheiro, A.L.R. (2012) Computational Modeling of Antimalarial 10-Substituted Deoxoartemisinins. Journal of Theoretical and Computational Chemistry, 11, 241-263.
https://doi.org/10.1142/S0219633612500162
[48]  Oliveira, L.F.S., Cordeiro, H.C., Brito, H.G., Pinheiro, A.C.B., Santos, M.A.B., Bitencourt, H.R., Figueiredo, A.F., Araújo, J.J.O., Gil, F.S., Farias, M.S., Barbosa, J.P. and Pinheiro, J.C. (2021) Molecular Electrostatic Potential and Pattern Recognition Models to Design Potentially Active Pentamidine Derivatives against Trypanosoma brucei Rhodesiense. Research, Society and Development, 10, e261101220207.
https://doi.org/10.33448/rsd-v10i12.20207
[49]  (2001) Pirouette 3.01. Infometrix, Inc., Woodinville.
[50]  Jefford, C.W. (2001) Why Artemisinin and Certain Synthetic Peroxides Are Potent Antimalarials. Implications for the Mode of Action. Current Medicinal Chemistry, 8, 1803-1826.
https://doi.org/10.2174/0929867013371608
[51]  Cheng, F., Shen, J., Luo, X., Zhu, W., Gu, J., Ji, R., Jiang, H. and Chen, K. (2002) Molecular Docking and 3-D-QSAR Studies on the Possible Antimalarial Mechanism of Artemisinin Analogues. Bioorganic & Medicinal Chememistry, 10, 2883-2891.
https://doi.org/10.1016/S0968-0896(02)00161-X
[52]  Tonmunphean, S., Parasuk, V. and Kokpol, S. (2001) Automated Calculation of Docking of Artemisinin to Heme. Journal of Molecular Modeling, 7, 26-33.
https://doi.org/10.1007/s008940100013
[53]  Polman, S., Kokpol, S., Hannongbua, S. and Rode, B.M. (1989) Quantum Pharmacological Analysis of Structure-Activity Relationships for Mefloquine Antimalarial Drugs. Analytical Sciences, 5, 641-646.
https://doi.org/10.2116/analsci.5.641
[54]  White, N.J. (2004) Antimalarial Drug Resistance. The Journal of Clinical Investigation, 113, 1084-1092.
https://doi.org/10.1172/JCI21682
[55]  Ferreira, M.M.C., Montanari, C.A. and Gaudio, A.C. (2002) Selecao de variáveis em QSAR. Quim Nova, 25, 439-448.
https://doi.org/10.1590/S0100-40422002000300017
[56]  Ferreira, M.M.C. (2015) Químiometria: Conceitos, Métodos e Aplicacoes. Editora UNICAMP, Campinas.
https://doi.org/10.7476/9788526814714
[57]  Bulat, F.A., Murray, J.S. and Politzer, P. (2021) Identifying the Most Energetic Electrons in a Molecule: The Highest Occupied Molecular Orbital and the Average Local Ionization Energy. Computational and Theoretical Chemistry, 1199, Article ID: 113192.
https://doi.org/10.1016/j.comptc.2021.113192
[58]  Soualmia, F., Belaidi, S., Tchouar, N., Lanez, T. and Boudergua, S. (2021) QSAR Studies and Structure Property/Activity Relationships Applied in Pyrazine Derivatives as Antiproliferative Agents against the BGC823. Acta Chimica Slovenica, 68, 882-895.
https://doi.org/10.17344/acsi.2021.6875
[59]  Gramatica, P., Corradi, M. and Consonni, V. (2000) Modelling and Prediction of Soil Sorption Coefficients of Non-Ionic Organic Pesticides by Molecular Descriptors. Chemosphere, 41, 763-777.
https://doi.org/10.1016/S0045-6535(99)00463-4
[60]  Kier, L.B., Hall, L.H. and Frazer, J.W. (1991) An Index of Electrotopological State for Atoms in Molecules. Journal of Mathematical Chemistry, 7, 229-241.
https://doi.org/10.1007/BF01200825
[61]  Ghose, A.K., Viswanadhan, V.N. and Wendoloski, J.J. (1998) Prediction of Hydrophilic (Lipophilic) Properties of Small Organic Molecules Using Fragmental Methods: An Analysis of ALOGP and CLOGP Methods. The Journal of Physical Chemistry, 102, 3762-3772.
https://doi.org/10.1021/jp980230o
[62]  Todeschini, R. and Consonni, V. (2000) Handbook of Molecular Descriptors, Wiley-VCH, Weinheiem.
https://doi.org/10.1002/9783527613106

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133