全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

肠道微生物在阿尔茨海默病中的作用机制研究
Study on the Mechanism of Intestinal Microbiota in Alzheimer’s Disease

DOI: 10.12677/AMB.2022.114023, PP. 182-190

Keywords: 肠道微生物,炎症,益生菌
Intestinal Microorganism
, inflammation, Probiotics

Full-Text   Cite this paper   Add to My Lib

Abstract:

阿尔茨海默病(Alzheimer’s Disease, AD)是一种以进行性认知功能障碍为特征的神经系统退行性疾病,是老年人失智最常见的病因之一。近年来,肠道菌群与AD之间的关系成为研究AD疾病的一个重要方向。越来越多的证据表明肠道菌群在AD疾病的病理生理学中起到关键作用,为了探讨肠道微生物在AD中的发病机制,本文梳理了近年来国内外有关肠道菌群变化与AD相关进展关系的相关研究,以及调节肠道微生态在AD疾病治疗中的新进展。肠道微生物通过调节身体机能稳态维持健康,当肠道微生物异常将会导致神经炎症,神经炎症假说在AD的进展和预后中有决定性的作用。益生菌对于治疗各种胃肠道疾病有利的作用,适量摄入以益生菌类为特征的健康饮食其他营养成分相结合,可以延缓认知能力下降,降低患AD的风险。肠道微生物异常进而引发神经炎症等病变会增加患AD的风险,适量补充益生菌类食物可提高认知能力从而减少AD的发病。
Alzheimer’s disease (AD) is a neurodegenerative disease characterized by progressive cognitive dysfunction, and is one of the most common causes of dementia in the elderly. In recent years, the relationship between gut microbiota and AD has become an important direction in the study of AD diseases. A growing body of evidence indicates that gut bacteria play a key role in the pathophysiology of AD disease, in order to explore the gut microbes in the pathogenesis of AD, this article combed the at home and abroad in recent years, the relationship between intestinal flora changes associated with AD progress of related research, as well as regulating the intestinal micro ecology in AD a new progress in the treatment of disease. Intestinal microorganisms maintain health by regulating body function homeostasis. Abnormal intestinal microorganisms will lead to neuroinflammation. Neuroinflammation hypothesis plays a decisive role in the progression and prognosis of AD. Probiotics have beneficial effects on the treatment of various gastrointestinal diseases. Moderate intake of other nutrients in a healthy diet characterized by probiotics, combined with other nutrients, can delay cognitive decline and reduce the risk of AD. Intestinal microbial abnormalities, which lead to neuroinflammation and other lesions, will increase the risk of AD. Appropriate supplementation of probiotic foods can improve cognitive ability and reduce the incidence of AD.

References

[1]  Bonfili, L., Cecarini, V., Gogoi, O., et al. (2021) Microbiota Modulation as Preventative and Therapeutic Approach in Alzheimer’s Disease. FEBS Journal, 288, 2836-2855.
https://doi.org/10.1111/febs.15571
[2]  Long, J.M. and Holtzman, D.M. (2019) Alzheimer Disease: An Update on Pathobiology and Treatment Strategies. Cell, 179, 312-339.
https://doi.org/10.1016/j.cell.2019.09.001
[3]  Rusek, M., Pluta, R., Ulamek-Koziol, M., et al. (2019) Ketogenic Diet in Alzheimer’s Disease. International Journal of Molecular Sciences, 20, Article No. 3892.
https://doi.org/10.3390/ijms20163892
[4]  Liu, S., Gao, J., Zhu, M., et al. (2020) Gut Microbiota and Dysbiosis in Alzheimer’s Disease: Implications for Pathogenesis and Treatment. Molecular Neurobiology, 57, 5026-5043.
https://doi.org/10.1007/s12035-020-02073-3
[5]  Gilbert, J.A., Blaser, M.J., Caporaso, J.G., et al. (2018) Current Understanding of the Human Microbiome. Nature Medicine, 24, 392-400.
https://doi.org/10.1038/nm.4517
[6]  Sochocka, M., Donskow-Lysoniewska, K., Diniz, B.S., et al. (2019) The Gut Microbiome Alterations and Inflammation-Driven Pathogenesis of Alzheimer’s Disease—A Critical Review. Molecular Neurobiology, 56, 1841-1851.
https://doi.org/10.1007/s12035-018-1188-4
[7]  Ling, Z., Liu, X., Cheng, Y., et al. (2022) Gut Microbiota and Aging. Critical Reviews in Food Science and Nutrition, 62, 3509-3534.
https://doi.org/10.1080/10408398.2020.1867054
[8]  Askarova, S., Umbayev, B., Masoud, A.R., et al. (2020) The Links between the Gut Microbiome, Aging, Modern Lifestyle and Alzheimer’s Disease. Frontiers in Cellular and Infection Microbiology, 10, Article No. 104.
https://doi.org/10.3389/fcimb.2020.00104
[9]  Tan, J., McKenzie, C., Potamitis, M., et al. (2014) The Role of Short-Chain Fatty Acids in Health and Disease. Advances in Immunology, 121, 91-119.
https://doi.org/10.1016/B978-0-12-800100-4.00003-9
[10]  Schoeler, M. and Caesar, R. (2019) Dietary Lipids, Gut Microbiota and Lipid Metabolism. Reviews in Endocrine and Metabolic Disorders, 20, 461-472.
https://doi.org/10.1007/s11154-019-09512-0
[11]  Matt, S.M., Allen, J.M., Lawson, M.A., et al. (2018) Butyrate and Dietary Soluble Fiber Improve Neuroinflammation Associated with Aging in Mice. Frontiers in Immunology, 9, Article No. 1832.
https://doi.org/10.3389/fimmu.2018.01832
[12]  Vanmechelen, E., Vanderstichele, H., Davidsson, P., et al. (2000) Quantification of Tau Phosphorylated at Threonine 181 in Human Cerebrospinal Fluid: A Sandwich ELISA with a Synthetic Phosphopeptide for Standardization. Neuroscience Letters, 285, 49-52.
https://doi.org/10.1016/S0304-3940(00)01036-3
[13]  Rosenberg, R.N., Fu, M. and Lambracht-Washington, D. (2018) Active Full-Length DNA Abeta42 Immunization in 3xTg-AD Mice Reduces Not Only Amyloid Deposition But Also Tau Pathology. Alzheimer’s Research & Therapy, 10, Article No. 115.
https://doi.org/10.1186/s13195-018-0441-4
[14]  Sheng, C., Yang, K., He, B., et al. (2022) Combination of Gut Microbiota and Plasma Amyloid-Beta as a Potential Index for Identifying Preclinical Alzheimer’s Disease: A Cross-Sectional Analysis from the SILCODE Study. Alzheimer’s Research & Therapy, 14, Article No. 35.
https://doi.org/10.1186/s13195-022-00977-x
[15]  Hong, M., Zhukareva, V., Vogelsberg-Ragaglia, V., et al. (1998) Mutation-Specific Functional Impairments in Distinct Tau Isoforms of Hereditary FTDP-17. Science, 282, 1914-1917.
https://doi.org/10.1126/science.282.5395.1914
[16]  Dong, S., Duan, Y., Hu, Y., et al. (2012) Advances in the Pathogenesis of Alzheimer’s Disease: A Re-Evaluation of Amyloid Cascade Hypothesis. Translational Neurodegeneration, 1, Article No. 18.
https://doi.org/10.1186/2047-9158-1-18
[17]  Halle, A., Hornung, V., Petzold, G.C., et al. (2008) The NALP3 Inflammasome Is Involved in the Innate Immune Response to Amyloid-Beta. Nature Immunology, 9, 857-865.
https://doi.org/10.1038/ni.1636
[18]  Nizami, S., Hall-Roberts, H., Warrier, S., et al. (2019) Microglial Inflammation and Phagocytosis in Alzheimer’s Disease: Potential Therapeutic Targets. British Journal of Pharmacology, 176, 3515-3532.
https://doi.org/10.1111/bph.14618
[19]  Varnum, M.M. and Ikezu, T. (2012) The Classification of Microglial Activation Phenotypes on Neurodegeneration and Regeneration in Alzheimer’s Disease Brain. Archivum Immunologiae et Therapiae Experimentalis (Warsz), 60, 251-266.
https://doi.org/10.1007/s00005-012-0181-2
[20]  Parker, A., Fonseca, S. and Carding, S.R. (2020) Gut Microbes and Metabolites as Modulators of Blood-Brain Barrier Integrity and Brain Health. Gut Microbes, 11, 135-157.
https://doi.org/10.1080/19490976.2019.1638722
[21]  Wikoff, W.R., Anfora, A.T., Liu, J., et al. (2009) Metabolomics Analysis Reveals Large Effects of Gut Microflora on Mammalian Blood Metabolites. Proceedings of the National Academy of Sciences of the United States of America, 106, 3698-3703.
https://doi.org/10.1073/pnas.0812874106
[22]  Barrett, E., Ross, R.P., O’Toole, P.W., et al. (2012) Gamma-Aminobutyric Acid Production by Culturable Bacteria from the Human Intestine. Journal of Applied Microbiology, 113, 411-417.
https://doi.org/10.1111/j.1365-2672.2012.05344.x
[23]  Asti, A. and Gioglio, L. (2014) Can a Bacterial Endotoxin Be a Key Factor in the Kinetics of Amyloid Fibril Formation? Journal of Alzheimer’s Disease, 39, 169-179.
https://doi.org/10.3233/JAD-131394
[24]  Kahn, M.S., Kranjac, D., Alonzo, C.A., et al. (2012) Prolonged Elevation in Hippocampal Abeta and Cognitive Deficits Following Repeated Endotoxin Exposure in the Mouse. Behavioural Brain Research, 229, 176-184.
https://doi.org/10.1016/j.bbr.2012.01.010
[25]  Cerovic, M., Forloni, G. and Balducci, C. (2019) Neuroinflammation and the Gut Microbiota: Possible Alternative Therapeutic Targets to Counteract Alzheimer’s Disease? Frontiers in Aging Neuroscience, 11, Article No. 284.
https://doi.org/10.3389/fnagi.2019.00284
[26]  Zhao, Y. and Lukiw, W.J. (2018) Bacteroidetes Neurotoxins and Inflammatory Neurodegeneration. Molecular Neurobiology, 55, 9100-9107.
https://doi.org/10.1007/s12035-018-1015-y
[27]  Maguire, M. and Maguire, G. (2019) Gut Dysbiosis, Leaky Gut, and Intestinal Epithelial Proliferation in Neurological Disorders: Towards the Development of a New Therapeutic Using Amino Acids, Prebiotics, Probiotics, and Postbiotics. Reviews in the Neurosciences, 30, 179-201.
https://doi.org/10.1515/revneuro-2018-0024
[28]  Wang, X., Sun, G., Feng, T., et al. (2019) Sodium Oligomannate Therapeutically Remodels Gut Microbiota and Suppresses Gut Bacterial Amino Acids-Shaped Neuroinflammation to Inhibit Alzheimer’s Disease Progression. Cell Research, 29, 787-803.
https://doi.org/10.1038/s41422-019-0216-x
[29]  Li, F., Wang, Y., Song, X., et al. (2022) The Intestinal Microbial Metabolite Nicotinamide n-Oxide Prevents Herpes Simplex Encephalitis via Activating Mitophagy in Microglia. Gut Microbes, 14, Article ID: 2096989.
https://doi.org/10.1080/19490976.2022.2096989
[30]  Lasry, A., Zinger, A. and Ben-Neriah, Y. (2016) Inflammatory Networks Underlying Colorectal Cancer. Nature Immunology, 17, 230-240.
https://doi.org/10.1038/ni.3384
[31]  Muller, P.A., Matheis, F., Schneeberger, M., et al. (2020) Microbiota-Modulated CART(+) Enteric Neurons Autonomously Regulate Blood Glucose. Science, 370, 314-321.
https://doi.org/10.1126/science.abd6176
[32]  De Giorgio, R., Guerrini, S., Barbara, G., et al. (2004) Inflammatory Neuropathies of the Enteric Nervous System. Gastroenterology, 126, 1872-1883.
https://doi.org/10.1053/j.gastro.2004.02.024
[33]  Chalazonitis, A. and Rao, M. (2018) Enteric Nervous System Manifestations of Neurodegenerative Disease. Brain Research, 1693, 207-213.
https://doi.org/10.1016/j.brainres.2018.01.011
[34]  Bonaz, B., Bazin, T. and Pellissier, S. (2018) The Vagus Nerve at the Interface of the Microbiota-Gut-Brain Axis. Frontiers in Neuroscience, 12, Article No. 49.
https://doi.org/10.3389/fnins.2018.00049
[35]  Lin, L., Zheng, L.J. and Zhang, L.J. (2018) Neuroinflammation, Gut Microbiome, and Alzheimer’s Disease. Molecular Neurobiology, 55, 8243-8250.
https://doi.org/10.1007/s12035-018-0983-2
[36]  Valles-Colomer, M., Falony, G., Darzi, Y., et al. (2019) The Neuroactive Potential of the Human Gut Microbiota in Quality of Life and Depression. Nature Microbiology, 4, 623-632.
https://doi.org/10.1038/s41564-018-0337-x
[37]  Fung, T.C., Olson, C.A. and Hsiao, E.Y. (2017) Interactions between the Microbiota, Immune and Nervous Systems in Health and Disease. Nature Neuroscience, 20, 145-155.
https://doi.org/10.1038/nn.4476
[38]  Spielman, L.J., Gibson, D.L. and Klegeris, A. (2018) Unhealthy Gut, Unhealthy Brain: The Role of the Intestinal Microbiota in Neurodegenerative Diseases. Neurochemistry International, 120, 149-163.
https://doi.org/10.1016/j.neuint.2018.08.005
[39]  Sochocka, M., Zwolinska, K. and Leszek, J. (2017) The Infectious Etiology of Alzheimer’s Disease. Current Neuropharmacology, 15, 996-1009.
https://doi.org/10.2174/1570159X15666170313122937
[40]  Pisa, D., Alonso, R., Fernandez-Fernandez, A.M., et al. (2017) Polymicrobial Infections in Brain Tissue from Alzheimer’s Disease Patients. Scientific Reports, 7, Article No. 5559.
https://doi.org/10.1038/s41598-017-05903-y
[41]  Salas, I.H., Burgado, J. and Allen, N.J. (2020) Glia: Victims or Villains of the Aging Brain? Neurobiology of Disease, 143, Article ID: 105008.
https://doi.org/10.1016/j.nbd.2020.105008
[42]  Sun, Y.X., Jiang, X.J., Lu, B., et al. (2020) Roles of Gut Microbiota in Pathogenesis of Alzheimer’s Disease and Therapeutic Effects of Chinese Medicine. Chinese Journal of Integrative Medicine, 28, 1048-1056.
https://doi.org/10.1007/s11655-020-3274-5
[43]  Fakhoury, M. (2018) Microglia and Astrocytes in Alzheimer’s Disease: Implications for Therapy. Current Neuropharmacology, 16, 508-518.
https://doi.org/10.2174/1570159X15666170720095240
[44]  Liu, P., Wu, L., Peng, G., et al. (2019) Altered Microbiomes Distinguish Alzheimer’s Disease from Amnestic Mild Cognitive Impairment and Health in a Chinese Cohort. Brain, Behavior, and Immunity, 80, 633-643.
https://doi.org/10.1016/j.bbi.2019.05.008
[45]  Zhuang, Z.Q., Shen, L.L., Li, W.W., et al. (2018) Gut Microbiota Is Altered in Patients with Alzheimer’s Disease. Journal of Alzheimer’s Disease, 63, 1337-1346.
https://doi.org/10.3233/JAD-180176
[46]  Haran, J.P., Bhattarai, S.K., Foley, S.E., et al. (2019) Alzheimer’s Disease Microbiome Is Associated with Dysregulation of the Anti-Inflammatory P-Glycoprotein Pathway. mBio, 10, e00632-19.
https://doi.org/10.1128/mBio.00632-19
[47]  Giau, V.V., Wu, S.Y., Jamerlan, A., et al. (2018) Gut Microbiota and Their Neuroinflammatory Implications in Alzheimer’s Disease. Nutrients, 10, Article No. 1765.
https://doi.org/10.3390/nu10111765
[48]  Borsom, E.M., Lee, K. and Cope, E.K. (2020) Do the Bugs in Your Gut Eat Your Memories? Relationship between Gut Microbiota and Alzheimer’s Disease. Brain Sciences, 10, Article No. 814.
https://doi.org/10.3390/brainsci10110814
[49]  Sherwin, E., Sandhu, K.V., Dinan, T.G., et al. (2016) May the Force Be With You: The Light and Dark Sides of the Microbiota-Gut-Brain Axis in Neuropsychiatry. CNS Drugs, 30, 1019-1041.
https://doi.org/10.1007/s40263-016-0370-3
[50]  Jiang, C., Li, G., Huang, P., et al. (2017) The Gut Microbiota and Alzheimer’s Disease. Journal of Alzheimer’s Disease, 58, 1-15.
https://doi.org/10.3233/JAD-161141
[51]  Hu, X., Wang, T. and Jin, F. (2016) Alzheimer’s Disease and Gut Microbiota. Science China Life Sciences, 59, 1006-1023.
https://doi.org/10.1007/s11427-016-5083-9
[52]  Harach, T., Marungruang, N., Duthilleul, N., et al. (2017) Reduction of Abeta Amyloid Pathology in APPPS1 Transgenic Mice in the Absence of Gut Microbiota. Scientific Reports, 7, Article No. 41802.
https://doi.org/10.1038/srep46856
[53]  Abraham, D., Feher, J., Scuderi, G.L., et al. (2019) Exercise and Probiotics Attenuate the Development of Alzheimer’s Disease in Transgenic Mice: Role of Microbiome. Experimental Gerontology, 115, 122-131.
https://doi.org/10.1016/j.exger.2018.12.005
[54]  Chen, D., Yang, X., Yang, J., et al. (2017) Prebiotic Effect of Fructooligosaccharides from Morinda officinalis on Alzheimer’s Disease in Rodent Models by Targeting the Microbiota-Gut-Brain Axis. Frontiers in Aging Neuroscience, 9, Article No. 403.
https://doi.org/10.3389/fnagi.2017.00403
[55]  Angelucci, F., Cechova, K., Amlerova, J., et al. (2019) Antibiotics, Gut Microbiota, and Alzheimer’s Disease. Journal of Neuroinflammation, 16, Article No. 108.
https://doi.org/10.1186/s12974-019-1494-4
[56]  Vogt, N.M., Kerby, R.L., Dill-McFarland, K.A., et al. (2017) Gut Microbiome Alterations in Alzheimer’s Disease. Scientific Reports, 7, Article No. 13537.
https://doi.org/10.1038/s41598-017-13601-y
[57]  Saji, N., Niida, S., Murotani, K., et al. (2019) Analysis of the Relationship between the Gut Microbiome and Dementia: A Cross-Sectional Study Conducted in Japan. Scientific Reports, 9, Article No. 1008.
https://doi.org/10.1038/s41598-018-38218-7
[58]  Nguyen, T., Fujimura, Y., Mimura, I., et al. (2018) Cultivable Butyrate-Producing Bacteria of Elderly Japanese Diagnosed with Alzheimer’s Disease. Journal of Microbiology, 56, 760-771.
https://doi.org/10.1007/s12275-018-8297-7
[59]  Pluta, R., Ulamek-Koziol, M., Januszewski, S., et al. (2020) Gut Microbiota and Pro/Prebiotics in Alzheimer’s Disease. Aging (Albany NY), 12, 5539-5550.
https://doi.org/10.18632/aging.102930
[60]  Mukherjee, S., Joardar, N., Sengupta, S., et al. (2018) Gut Microbes as Future Therapeutics in Treating Inflammatory and Infectious Diseases: Lessons from Recent Findings. The Journal of Nutritional Biochemistry, 61, 111-128.
https://doi.org/10.1016/j.jnutbio.2018.07.010
[61]  Ding, L., et al. (2019) Efficacy of Different Probiotic Protocols in Irritable Bowel Syndrome: A Network Meta-Analysis. Medicine (Baltimore), 98, e16068.
https://doi.org/10.1097/MD.0000000000016068
[62]  Ho, L., Ono, K., Tsuji, M., et al. (2018) Protective Roles of Intestinal Microbiota Derived Short Chain Fatty Acids in Alzheimer’s Disease-Type Beta-Amyloid Neuropathological Mechanisms. Expert Review of Neurotherapeutics, 18, 83-90.
https://doi.org/10.1080/14737175.2018.1400909
[63]  Kobayashi, Y., Sugahara, H., Shimada, K., et al. (2017) Therapeutic Potential of Bifidobacterium breve Strain A1 for Preventing Cognitive Impairment in Alzheimer’s Disease. Scientific Reports, 7, Article No. 13510.
https://doi.org/10.1038/s41598-017-13368-2
[64]  Kobayashi, Y., Kuhara, T., Oki, M., et al. (2019) Effects of Bifidobacterium breve A1 on the Cognitive Function of Older Adults with Memory Complaints: A Randomised, Double-Blind, Placebo-Controlled Trial. Beneficial Microbes, 10, 511-520.
https://doi.org/10.3920/BM2018.0170
[65]  Pistollato, F., Iglesias, R.C., Ruiz, R., et al. (2018) Nutritional Patterns Associated with the Maintenance of Neurocognitive Functions and the Risk of Dementia and Alzheimer’s Disease: A Focus on Human Studies. Pharmacological Research, 131, 32-43.
https://doi.org/10.1016/j.phrs.2018.03.012
[66]  Akbari, E., Asemi, Z., Daneshvar, K.R., et al. (2016) Effect of Probiotic Supplementation on Cognitive Function and Metabolic Status in Alzheimer’s Disease: A Randomized, Double-Blind and Controlled Trial. Frontiers in Aging Neuroscience, 8, Article No. 256.
https://doi.org/10.3389/fnagi.2016.00256

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413