全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

New Probability Distributions in Astrophysics: X. Truncation and Mass-Luminosity Relationship for the Frèchet Distribution

DOI: 10.4236/ijaa.2022.124020, PP. 347-362

Keywords: Stars: Normal, Stars: Luminosity Function, Mass Function Stars: Statistics

Full-Text   Cite this paper   Add to My Lib

Abstract:

The Frèchet distribution has aided the modelling of scientific data in many contexts. We demonstrate how it can be adapted to model astrophysical data. We analyze the truncated version of the Frèchet distribution deriving the probability density function (PDF), the distribution function, the average value, the rth moment about the origin, the median, the random generation of values and the maximum likelihood estimator, which allows us to derive the two unknown parameters. This first PDF in the regular and truncated version is then applied to model the mass of the stars. A canonical transformation from the mass to the luminosity allows us to derive a new PDF, which is derived in its regular and truncated version. Finally, we apply this new PDF model on the distribution in luminosity of NGC 2362.

References

[1]  Fréchet, M. (1927) Sur la loi de probabilité de l’écart maximum. Annales de la Société Polonaise de Mathématique, 6, 93-116.
[2]  Rosin, P. and Rammler, E. (2012) The Laws Governing the Fineness of Powdered Coal. Journal of the Institute of Fuel, 7, 29-36.
[3]  Gumbel, E.J. (1965) A Quick Estimation of the Parameters in Frechet’s Distribution. Review of the International Statistical Institute, 33, 349-363.
https://doi.org/10.2307/1401700
[4]  Abbas, K. and Yincai, T. (2012) Comparison of Estimation Methods for Frechet Distribution with Known Shape. Caspian Journal of Applied Sciences Research, 1, 58-64.
[5]  Ramos, P.L., Louzada, F., Ramos, E. and Dey, S. (2020) The Fréchet Distribution: Estimation and Application—An Overview. Journal of Statistics and Management Systems, 23, 549-573.
https://doi.org/10.1080/09720510.2019.1645400
[6]  Harlow, D.G. (2002) Applications of the Fréchet Distribution Function. International Journal of Materials and Product Technology, 17, 482-495.
https://doi.org/10.1504/IJMPT.2002.005472
[7]  Vivekanandan, N. (2015) Quantitative Assessment on Fitting of Gumbel and Frechet Distributions for Extreme Value Analysis of Rainfall. International Journal of Scientific Research in Science and Technology, 1, 68.
[8]  Abid, S.H. and Hassan, H.A. (2015) Some Additive Failure Rate Models Related with Moeu Distribution. American Journal of Systems Science, 4, 1-10.
[9]  Abid, S.H. (2016) Properties of Doubly-Truncated Fréchet Distribution. American Journal of Applied Mathematics and Statistics, 4, 9-15.
[10]  Olver, F.W.J., Lozier, D.W., Boisvert, R.F. and Clark, C.W. (2010) NIST Handbook of Mathematical Functions. Cambridge University Press, Cambridge.
[11]  Lang, K.R. (1999) Astrophysical Formulae. Third Edition, Springer, New York.
https://doi.org/10.1007/978-3-662-21639-2
[12]  Zaninetti, L. (2005) The Initial Mass Function as Given by the Fragmentation. Astronomische Nachrichten, 326, 754.
https://doi.org/10.1002/asna.200510408
[13]  Longair, M.S. (2011) High Energy Astrophysics. 3rd Edition, Cambridge University Press, Cambridge.
https://doi.org/10.1017/CBO9780511778346
[14]  Press, W.H., Teukolsky, S.A., Vetterling, W.T. and Flannery, B.P. (1992) Numerical Recipes in FORTRAN. The Art of Scientific Computing. Cambridge University Press, Cambridge.
[15]  Akaike, H. (1974) A New Look at the Statistical Model Identification. IEEE Transactions on Automatic Control, 19, 716-723.
https://doi.org/10.1109/TAC.1974.1100705
[16]  Liddle, A.R. (2004) How Many Cosmological Parameters? MNRAS, 351, L49.
https://doi.org/10.1111/j.1365-2966.2004.08033.x
[17]  Godlowski, W. and Szydowski, M. (2005) Constraints on Dark Energy Models from Supernovae. In: Turatto, M., Benetti, S., Zampieri, L. and Shea, W., Eds., 1604-2004: Supernovae as Cosmological Lighthouses, Vol. 342 of Astronomical Society of the Pacific Conference Series, Astronomical Society of the Pacific, San Francisco, 508-516.
[18]  Kolmogoroff, A. (1941) Confidence Limits for an Unknown Distribution Function. The Annals of Mathematical Statistics, 12, 461-463.
https://doi.org/10.1214/aoms/1177731684
[19]  Smirnov, N. (1948) Table for Estimating the Goodness of Fit of Empirical Distributions. The Annals of Mathematical Statistics, 19, 279-281.
https://doi.org/10.1214/aoms/1177730256
[20]  Massey, F.J.J. (1951) The Kolmogorov-Smirnov Test for Goodness of Fit. Journal of the American Statistical Association, 46, 68-78.
https://doi.org/10.1080/01621459.1951.10500769
[21]  Irwin, J., Hodgkin, S., Aigrain, S., Bouvier, J., Hebb, L., Irwin, M. and Moraux, E. (2008) The Monitor Project: Rotation of Low-Mass Stars in NGC 2362—Testing the Disc Regulation Paradigm at 5 Myr. MNRAS, 384, 675-686.
https://doi.org/10.1111/j.1365-2966.2007.12725.x
[22]  Moitinho, A., Alves, J., Huélamo, N. and Lada, C.J. (2001) NGC 2362: A Template for Early Stellar Evolution. ApJ Letters, 563, L73.
https://doi.org/10.1086/338503
[23]  Oliveira, J.M., Jeffries, R.D. and van Loon, J.T. (2009) The Low-Mass Initial Mass Function in the Young Cluster NGC 6611. MNRAS, 392, 1034-1050.
https://doi.org/10.1111/j.1365-2966.2008.14140.x
[24]  Prisinzano, L., Damiani, F., et al. (2016) The Gaia-ESO Survey: Membership and Initial Mass Function of the γ Velorum Cluster. A&A, 589, A70.
https://doi.org/10.1051/0004-6361/201527875
[25]  Panwar, N., Pandey, A.K., Samal, M.R., et al. (2018) Young Cluster Berkeley 59: Properties, Evolution, and Star Formation. The Astronomical Journal, 155, 44.
https://doi.org/10.3847/1538-3881/aa9f1b
[26]  Zaninetti, L. (2021) New Probability Distributions in Astrophysics: V. The Truncated Weibull Distribution. International Journal of Astronomy and Astrophysics, 11, 133-149.
https://doi.org/10.4236/ijaa.2021.111008
[27]  Zaninetti, L. (2021) New Probability Distributions in Astrophysics: VI. The Truncated Sujatha Distribution. International Journal of Astronomy and Astrophysics, 11, 517-529.
https://doi.org/10.4236/ijaa.2021.114028
[28]  Zaninetti, L. (2020) New Probability Distributions in Astrophysics: II. The Generalized and Double Truncated Lindley. International Journal of Astronomy and Astrophysics, 10, 39-55.
https://doi.org/10.4236/ijaa.2020.101004
[29]  Zaninetti, L. (2019) New Probability Distributions in Astrophysics: I. The Truncated Generalized Gamma. International Journal of Astronomy and Astrophysics, 9, 393-410.
https://doi.org/10.4236/ijaa.2019.94027
[30]  Zaninetti, L. (2017) A Left and Right Truncated Lognormal Distribution for the Stars. Advances in Astrophysics, 2, 197-213.
https://doi.org/10.22606/adap.2017.23005
[31]  Zaninetti, L. (2013) A Right and Left Truncated Gamma Distribution with Application to the Stars. Advanced Studies in Theoretical Physics, 23, 1139-1147.
https://doi.org/10.12988/astp.2013.310125
[32]  Zaninetti, L. (2013) The Initial Mass Function Modeled by a Left Truncated Beta Distribution. The Astrophysical Journal, 765, 128-135.
https://doi.org/10.1088/0004-637X/765/2/128

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133