全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Measurement of the Dark Matter Velocity Dispersion with Dwarf Galaxy Rotation Curves

DOI: 10.4236/ijaa.2022.124021, PP. 363-381

Keywords: Warm Dark Matter, Galaxy Rotation Curves, Dwarf Galaxies

Full-Text   Cite this paper   Add to My Lib

Abstract:

Warm dark matter has, by definition, a velocity dispersion. Let vhms(a)=vhms(1)/a be the root-mean-square velocity of non-relativistic warm dark matter particles in the early universe at expansion parameter a. vhms(1) is an adiabatic invariant. We obtain vhms(1)?in the core of 11 dwarf galaxies dominated by dark matter, from their observed rotation curves, up to a rotation and relaxation correction. We obtain a mean 0.490 km/s and standard deviation 0.160 km/s, with a distribution peaked at the lower end. We apply a mild, data driven, rotation and relaxation correction that obtains the adiabatic invariant in the core of the galaxies: vhms(1)=0.406 ± 0.069 km/s. These two small relative standard deviations justify the prediction that the adiabatic invariant vhms(1) in the core of the galaxies is of cosmological origin if dark matter is warm. This result is in agreement with measurements of vhms(1) based on spiral galaxy rotation curves, galaxy ultra-violet luminosity distributions, galaxy stellar mass distributions, the formation of first galaxies, reionization, and the velocity dispersion cut-off mass.

References

[1]  Paduroiu, S., Revaz, Y. and Pfenniger, D. (2015) Structure Formation in Warm Dark Matter Cosmologies Top-Bottom Upside-Down..
https://arxiv.org/pdf/1506.03789.pdf
[2]  Hoeneisen, B. (2022) Comments on Warm Dark Matter Measurements and Limits. International Journal of Astronomy and Astrophysics, 12, 94-109.
https://doi.org/10.4236/ijaa.2022.121006
[3]  Particle Data Group, Workman, R.L. et al. (2022) Review of Particle Physics. Progress of Theoretical and Experimental Physics, 2022, 083C01.
https://doi.org/10.1093/ptep/ptac097
[4]  Hoeneisen, B. (2022) Warm Dark Matter and the Formation of First Galaxies. Journal of Modern Physics, 13, 932-948.
https://doi.org/10.4236/jmp.2022.136053
[5]  Hoeneisen, B. (2019) The Adiabatic Invariant of Dark Matter in Spiral Galaxies. International Journal of Astronomy and Astrophysics, 9, 355-367.
[6]  Oh, S., et al. (2015) High-Resolution Mass Models of Dwarf Galaxies from LITTLE THINGS. The Astronomical Journal, 149, 180.
https://doi.org/10.1088/0004-6256/149/6/180
[7]  Mo, H., van den Bosch, F. and White, S. (2010) Galaxy Formation and Evolution. Cambridge University Press, Cambridge.
[8]  Hoeneisen, B. (2019) A Study of Dark Matter with Spiral Galaxy Rotation Curves. International Journal of Astronomy and Astrophysics, 9, 71-96.
https://doi.org/10.4236/ijaa.2019.92007
[9]  Binney, J. and Tremaine, S. (2008) Galactic Dynamics. 2nd Edition, Princeton University Press, Princeton.
https://doi.org/10.1515/9781400828722
[10]  Hoeneisen, B. (2021) A Study of Three Galaxy Types, Galaxy Formation, and Warm Dark Matter. International Journal of Astronomy and Astrophysics, 11, 489-508.
https://doi.org/10.4236/ijaa.2021.114026
[11]  Kormendy, J. and Freeman, K.C. (2015) Scaling Laws for Dark Matter Halos in Late-Type and Dwarf Spheroidal Galaxies. The Astrophysical Journal, 817, 84.
https://doi.org/10.3847/0004-637X/817/2/84
[12]  Hunter, D.A., Ficut-Vicas, D., Ashley, T., et al. (2012) LITTLE THINGS. The Astronomical Journal, 144, 134.
https://doi.org/10.1088/0004-6256/144/5/134
[13]  Kennicutt Jr., R.C., Armus, L., Bendo, G., et al. (2003) SINGS: The SIRTF Nearby Galaxies Survey. Publications of the Astronomical Society of the Pacific, 115, 928.
https://doi.org/10.1086/376941
[14]  Hunter, D.A. and Elmegreen, B.G. (2006) Broadband Imaging of a Large Sample of Irregular Galaxies. The Astrophysical Journal Supplement Series, 162, 49-79.
https://doi.org/10.1086/498096
[15]  Ashley, T., Simpson, C.E. and Elmegreen, B.G. (2013) The HI Chronicles of LITTLE THINGS BCDs: Evidence for External Perturbations in the Morphology and Kinematics of Haro 29 and Haro 36. The Astronomical Journal, 146, Article No. 42.
https://doi.org/10.1088/0004-6256/146/2/42
[16]  Sommer-Larsen, J. and Dolgov, A. (2001) Formation of Disk Galaxies: Warm Dark Matter and the Angular Momentum Problem. The Astrophysical Journal, 551, 608-623.
https://doi.org/10.1086/320211
[17]  Hogan, C.J. and Dalcanton, J.J. (2000) New Dark Matter Physics: Clues from Halo Structure. Physical Review D, 62, Article ID: 063511.
https://doi.org/10.1103/PhysRevD.62.063511
[18]  Dalcanton, J.J. and Hogan, C.J. (2001) Halo Cores and Phase-Space Densities: Observational Constraints on Dark Matter Physics and Structure Formation. The Astrophysical Journal, 561, 35.
https://doi.org/10.1086/323207
[19]  Karukes, E.V. and Salucci, P. (2016) The Universal Rotation Curve of Dwarf Disc Galaxies. Monthly Notices of the Royal Astronomical Society, 465, 4703-4722.
https://doi.org/10.1093/mnras/stw3055
[20]  Hoeneisen, B. (2022) Measurement of the Dark Matter Velocity Dispersion with Galaxy Stellar Masses, UV Luminosities, and Reionization. International Journal of Astronomy and Astrophysics, 12, 258-272.
https://doi.org/10.4236/ijaa.2022.123015

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413