The discovered in 2008 Fe-based superconductors (SC) are a paramagnetic semimetal at ambient temperature and in some cases they become superconductor upon doping. In spite of so many years since its discovery it is still not known the mechanism that leads to superconductivity. The electronic structure study is used for determining key features of the SC mechanism in these materials. The calculations were performed using the modern suite of programs MOLPRO 2021. We performed quantum calculations of a cluster embedded in a background charge distribution that represents the infinite crystal. The Natural Population Analysis was used for determining the charge and spin distribution in the studied materials. As follows from our results, the possible mechanism for superconductivity corresponds to the RVB theory proposed by Anderson for high Tc superconductivity in cuprates.
References
[1]
Kamerling Onnes, H. (1911) On the Change in the Resistance of Pure Metals at Very Low Temperatures. III. The Resistance of Platinum at Helium Temperatures. Communications, 124, 799-802.
[2]
Heisenberg, W. (1925) Quantum-Theoretical Re-Interpretation of Kinematic and Mechanical Relations. Zeitschrift für Physik, 33, 879-893.
https://doi.org/10.1007/BF01328377
[3]
Born, M. and Jordan, P. (1925) Zur Quantenmechanik. Zeitschrift für Physik, 34, 858-888. https://doi.org/10.1007/BF01328531
[4]
Schrıdinger, E. (1926) On the Relation between the Quantum Mechanics of Heisenberg, Born, and Jordan, and that of Schrıdinger. Annalen der Physik, 79, 361-376, 489-527, 734-756. https://doi.org/10.1002/andp.19263840804
[5]
Schrıdinger, E. (1926) An Undulatory Theory of the Mechanics of Atoms and Molecules. Physical Review, 28, 1049-1070. https://doi.org/10.1103/PhysRev.28.1049
[6]
Kamihara, Y., Watanabe, M. and Hosono, H. (2008) Iron-Based Layered Superconductor La[O1-xFx]FeAs (x = 0.05-0.12) with Tc = 26 K. Journal of the American Chemical Society, 130, 3296-3297. https://doi.org/10.1021/ja800073m
[7]
Takahashi, H., Igawa, K., Arii, K., Kamihara, Y., Hirano, M. and Hosono, H. (2008) Superconductivity at 43K in an Iron-Based Layered Compound LaO1-xFxFeAs. Nature (London), 453, 376-378. https://doi.org/10.1038/nature06972
[8]
Stewart, R.G. (2011). Superconductivity in Iron Compounds. Reviews of Modern Physics, 83, 1589-1652. https://doi.org/10.1103/RevModPhys.83.1589
[9]
Sefat, A.S., Jin, R., McGuire, M.A., Sales, B.C., Singh, D.J. and Mandrus, D. (2008) Superconductivity at 22 K in Co-Doped BaFe2As2 Crystals. Physical Review Letters, 101, Article ID: 117004. https://doi.org/10.1103/PhysRevLett.101.117004
[10]
Sefat, A.S., Singh, D.J., Van Bebber, L.H., et al. (2009) Absence of Superconductivity in Hole-Doped BaFe2-xCrxAs2 Single Crystals. Physical Review B, 79, Article ID: 224524. https://doi.org/10.1103/PhysRevB.79.224524
[11]
Sefat, A.S., Marty, K., Christianson, A.D., et al. (2012) Effect of Molybdenum 4d Hole Substitution in BaFe2As2. Physical Review B, 85, Article ID: 024503.
https://doi.org/10.1103/PhysRevB.85.024503
[12]
Texier, Y., Laplace, Y., Mendels, P., et al. (2012) Mn Local Moments Prevent Superconductivity in Iron Pnictides Ba(Fe1-xMnx)2As2. Europhysics Letters, 99, 17002.
https://doi.org/10.1209/0295-5075/99/17002
[13]
Canfield, P.C., Bud’ko, S.L., Ni, N., Yan, J.Q. and Kracher, A. (2009) Decoupling of the Superconducting and Magnetic/Structural Phase Transitions in Electron-Doped BaFe2As2. Physical Review B, 80, Article ID: 060501.
https://doi.org/10.1103/PhysRevB.80.060501
[14]
Mun, E.D., Bud’ko, S.L., Ni, N., Thaler, A.N. and Canfield, P.C. (2009) Thermoelectric Power and Hall Coefficient Measurements on Ba(Fe1-xMnx)2As2 (T=Co and Cu). Physical Review B, 80, Article ID: 054517.
[15]
Ni, N., Thaler, A., Kracher, A., Yan, J.Q., Bud’ko, S.L. and Canfield, P.C. (2009) Phase Diagrams of Ba(Fe1-xMnx)2As2 Single Crystals (M=Rh and Pd). Physical Review B, 80, Article ID: 024511.
[16]
Mazin, I.I., Singh, D.J., Johannes, M.D. and Du, M.H. (2008) Comment on “Low-Lying States and Hidden Kinematic Collective Charge Instabilities in Parent Cobaltate Superconductors. Physical Review Letters, 101, Article ID: 057003.
https://doi.org/10.1103/PhysRevLett.101.089703
[17]
Mazin, I.I. and Schmalian, J. (2009) Pairing Symmetry and Pairing State in Ferropnictides: Theoretical Overview. Physica C, 469, 614-627.
https://doi.org/10.1016/j.physc.2009.03.019
[18]
Singh, D.J. and Du, M.H. (2008) Density Functional Study of LaFeAsO1-xFx: A Low Carrier Density Superconductor near Itinerant Magnetism. Physical Review Letters, 100, Article ID: 237003. https://doi.org/10.1103/PhysRevLett.100.237003
[19]
Norman, M.R. (2008) High-Temperature Superconductivity in the Iron Pnictides. Physics, 1, Article No. 21. https://doi.org/10.1103/Physics.1.21
[20]
Mazin, I.I. (2010) Superconductivity Gets an Iron Boost. Nature, 464, 183-186.
https://doi.org/10.1038/nature08914
[21]
Norman, M.R. (2011) The Challenge of Unconventional Superconductivity. Science, 332, 196-200. https://doi.org/10.1126/science.1200181
[22]
Wang, F. and Lee, D.H. (2011) The Electron-Pairing Mechanism of Iron-Based Superconductors. Science, 332, 200-204. https://doi.org/10.1126/science.1200182
[23]
Chubukov, A. (2012) Pairing Mechanism in Fe-Based Superconductors. Annual Review of Condensed Matter Physics, 3, 57-92.
https://doi.org/10.1146/annurev-conmatphys-020911-125055
[24]
Kordyuk, A.A. (2012) Iron-Based Superconductors: Magnetism, Superconductivity, and Electronic Structure (Review Article). Low Temperature Physics, 38, 888.
https://doi.org/10.1063/1.4752092
[25]
Baquero, R. (2014) La Superconductividad: sus orígenes, sus teorías, sus problemas candentes hoy. Revista de la Academia Colombiana de Ciencias Exactas, 38, 18-33.
https://doi.org/10.18257/raccefyn.152
[26]
Prozorov, R., Kończykowski, M., Tanatar, M.A., Wen, H.H., Fernandes, R.M. and Canfield, P.C. (2019) Interplay between Superconductivity and Itinerant Magnetism in Underdoped Ba1-xKxFe2As2 (x = 0.2) Probed by the Response to Controlled Point-Like Disorder. NPJ Quantum Materials, 4, Article No. 34.
https://doi.org/10.1038/s41535-019-0171-2
[27]
Ouni, B., Larbi, T. and Amlouk, M. (2022) Vibrational, Electronic and Structural Study of Sprayed ZnO Thin Film Based on the IR-Raman Spectra and DFT Calculations. Crystal Structure Theory and Applications 11, 23-38.
https://doi.org/10.4236/csta.2022.112002
[28]
Kuroki, K., Onari, S., Arita, R., Usui, H., et al. (2008) Unconventional Pairing Originating from the Disconnected Fermi Surfaces of Super-conducting LaFeAsO1-xFx. Physical Review Letters, 101, Article ID: 087004.
https://doi.org/10.1103/PhysRevLett.101.087004
[29]
Onari, S. and Kontani, H. (2009) Violation of Anderson’s Theorem for the Sign-Reversing S-Wave State of Iron-Pnictide Superconductors. Physical Review Letters, 103, Article ID: 177001. https://doi.org/10.1103/PhysRevLett.103.177001
[30]
Kontani, H. and Onari, S. (2010) Orbital-Fluctuation-Mediated Superconductivity in Iron Pnictides: Analysis of the Five-Orbital Hubbard-Holstein Model. Physical Review Letters, 104, Article ID: 157001.
https://doi.org/10.1103/PhysRevLett.104.157001
[31]
Chen, W.Q., Yang, K.Y., Zhou, Y. and Hang, F.C. (2009) Strong Coupling Theory for Superconducting Iron Pnictides. Physical Review Letters, 102, Article ID: 047006.
https://doi.org/10.1103/PhysRevLett.102.047006
[32]
Qazilbash, M.M., Hamlin, J.J., Baumbach, R.E., Zhang, L., Singh, D.J., Maple, M.B. and Basov, D.N. (2009) Electronic Correlations in the Iron Pnictides. Nature Physics, 5, 647-650. https://doi.org/10.1038/nphys1343
[33]
Laad, M.S., Craco, L., Leoni, S. and Rosner, H. (2009) Electrodynamic Response of Incoherent Metals: Normal Phase of Iron Pnictides. Physical Review B, 79, Article ID: 024515. https://doi.org/10.1103/PhysRevB.79.024515
[34]
Lee, P.A., Nagaosa, N. and Wen, X.G. (2006) Doping a Mott Insulator: Physics of High-Temperature Superconductivity. Reviews of Modern Physics, 78, 17-85.
https://doi.org/10.1103/RevModPhys.78.17
[35]
Anderson, P.W. (1987) The Resonating Valence Bond State in La2CuO4 and Superconductivity. Science, 235, 1196-1198.
https://doi.org/10.1126/science.235.4793.1196
[36]
Kivelson, S.A., Rokhsar, D.S. and Sethna, J.P. (1987) Topology of the Resonating Valence-Bond State: Solitons and High-Tc Superconductivity. Physical Review B, 35, 8865-8868. https://doi.org/10.1103/PhysRevB.35.8865
[37]
Anderson, P.W., Baskaran, G., Zou, Z. and Hsu, T. (1987) Resonating-Valence-Bond Theory of Phase Transitions and Superconductivity in La2CuO4-Based Compounds. Physical Review Letters, 58, 2790-2793.
https://doi.org/10.1103/PhysRevLett.58.2790
[38]
Soullard, J., Pérez-Enriquez, R. and Kaplan, I. (2015) Comparative Study of Pure and Co-Doped BaFe2As2. Physical Review B, 91, Article ID: 184517.
https://doi.org/10.1103/PhysRevB.91.184517
[39]
Soullard, J. and Kaplan, I. (2016) Comparative Study of the Magnetic Structure of BaFe2As2 Doped with Co or Ni. Journal of Superconductivity and Novel Magnetism, 29, 3147-3154. https://doi.org/10.1007/s10948-016-3626-8
[40]
Columbié-Leyva, R., Soullard, J. and Kaplan, I. (2019) Electronic Structure Study of New Family of High-Tc Fe-Superconductors Based on BaFe2As2 in Presence of Dopants Rh and Pd. MRS Advances, 4, 3365-3372.
https://doi.org/10.1557/adv.2019.409
[41]
Columbié-Leyva, R., Miranda, U., López-Vivas, A., Soullard, J. and Kaplan, I.G. (2021) Quantum Mechanical Calculations of High-Tc Fe-Superconductors. Journal of Quantum Information Science, 11, 84-98.
https://doi.org/10.4236/jqis.2021.112007
[42]
Kaplan, I.G., Soullard, J., Hernández-Cobos, J. and Pandey, R. (1999) Electronic Structure of YBa2Cu3O7 Ceramics at the MP2 Electron Correlation Level. Journal of Physics: Condensed Matter, 11, 1049-1058.
https://doi.org/10.1088/0953-8984/11/4/012
[43]
Kaplan, I.G., Hernández-Cobos, J. and Soullard, J. (1998) Quantum Systems in Chemistry and Physics, Kluwer Academic, Dordrecht, 143-158.
[44]
Kaplan, I.G., Soullard, J. and Hernández-Cobos, J. (2002) Effect of Zn and Ni Substitution on the Local Electronic Structure of the YBa2Cu3O7 Superconductor. Physical Review B, 65, Article ID: 214509. https://doi.org/10.1103/PhysRevB.65.214509
[45]
Foster, J.P. and Weinhold, F. (1980) Natural Hybrid Orbitals. Journal of the American Chemical Society, 102, 7211-7218. https://doi.org/10.1021/ja00544a007
[46]
Werner, H.-J., Knowles, P.J., Knizia, G., Manby, F.R. and Schütz, M. (2012) Molpro: a General-Purpose Quantum Chemistry Program Package. WIREs Computational Molecular Science, 2, 242-253. https://doi.org/10.1002/wcms.82
[47]
Werner, H.-J., Knowles, P.J., et al. (2020) The Molpro Quantum Chemistry Package. The Journal of Chemical Physics, 152, Article ID: 144107.
https://doi.org/10.1063/5.0005081
[48]
Kaplan, I.G. (2006) Intermolecular Interaction: Physical Picture, Computational Methods and Model Potentials. John Wiley & Sons, Chichester, 367.
https://doi.org/10.1002/047086334X
[49]
Rassolov, V.A., Pople, J.A., Ratner, M.A. and Windus, T.L. (1998) 6-31G* Basis Set for Atoms K through Zn. The Journal of Chemical Physics, 109, 1223-1229.
https://doi.org/10.1063/1.476673
[50]
Curtiss, L.A., McGrath, M.P., Blaudeau, J.-P., Davis, N.E., Binning, R.C. and Radom, L. (1995) Extension of Gaussian-2 Theory to Molecules Containing Third-Row Atoms Ga-Kr. The Journal of Chemical Physics, 103, 6104-6113.
https://doi.org/10.1063/1.470438
[51]
Pritchard, B.P., Altarawy, D., Didier, B., Gibsom, T.D. and Windus, T.L. (2019) New Basis Set Exchange: An Open, Up-to-Date Resource for the Molecular Sciences Community. Journal of Chemical Information and Modeling, 59, 4814-4820.
https://doi.org/10.1021/acs.jcim.9b00725
[52]
Feller, D. (1996) The Role of Databases in Support of Computational Chemistry Calculations. Journal of Computational Chemistry, 17, 1571-1586.
https://doi.org/10.1002/(SICI)1096-987X(199610)17:13<1571::AID-JCC9>3.0.CO;2-P
[53]
Schuchardt, K.L., Didier, B.T., Elsethagen, T., et al. (2007) Basis Set Exchange: A Community Database for Computational Sciences. Journal of Chemical Information and Modeling, 47, 1045-1052. https://doi.org/10.1021/ci600510j
[54]
Dolg, M., Stoll, H., Savin, A. and Preuss, H. (1989) Energy-Adjusted Pseudopotentials for the Rare Earth Elements. Theoretical Chemistry Accounts, 75, 173-194.
https://doi.org/10.1007/BF00528565
[55]
Küchle, W., Dolg, M., Stoll, H. and Preuss, H. (1994) Energy-Adjusted Pseudopotentials for the Actinides. Parameter Sets and Test Calculations for Thorium and Thorium Monoxide. The Journal of Chemical Physics, 100, 7535-7542.
https://doi.org/10.1063/1.466847
[56]
Kaupp, M., Schleyer, P.V.R., Stoll, H. and Preuss, H. (1991) Pseudopotential Approaches to Ca, Sr, and Ba Hydrides. Why Are Some Alkaline Earth MX
2 Compounds Bent? The Journal of Chemical Physics, 94, 1360-1366.
https://doi.org/10.1063/1.459993
[57]
Andrae, D., Haeussermann, U., Dolg, M., Stoll, H. and Preuss, H. (1990) Energy-Adjusted ab initio Pseudopotentials for the Second and Third Row Transition Elements. Theoretical Chemistry Accounts, 77, 123-141.
https://doi.org/10.1007/BF01114537
[58]
Nikolaienko, T.Y. and Bulavin, L.A. (2019) Localized Orbitals for Optimal Decomposition of Molecular Properties. International Journal of Quantum Chemistry, 119, e25798. https://doi.org/10.1002/qua.25798
[59]
Nikolaienko, T.Y., Bulavin, L.A. and Hovorun, D.M. (2014) JANPA: An Open Source Cross-Platform Implementation of the Natural Population Analysis on the Java Platform. Computational and Theoretical Chemistry, 1050, 15-22.
https://doi.org/10.1016/j.comptc.2014.10.002
[60]
Werner, H.J. and Knowles, P.J. (2015) MOLPRO Users Manual, Version 2015.1.
https://www.theochem.ru.nl/files/local/molpro2015.1.pdf