全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Ionic Liquid Efficiency on Wood Dissolution and Polysaccharide Identification

DOI: 10.4236/abc.2022.126021, PP. 254-273

Keywords: Plant Cell Wall, Antibody, Immunolabeling, Imidazolium Based IL, DBU Based IL

Full-Text   Cite this paper   Add to My Lib

Abstract:

The wood polysaccharide composition, a new analytical method, based on ionic liquid dissolution of low amount of biomass coupled with an ELISA essay of polysaccharides. In the present work, we synthesized and tested several imidazolium and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) based ILs for their ability to solubilize Douglas-fir wood while preserving the wall polymer integrity. The couple times-temperatures have been essayed for wood dissolution. Then their efficiency for wood biomass dissolution was compared to the impact of IL on storing and/or destroy polysaccharides. Thanks to the ELISA technique with a set of mAbs against epitopes of the main hemicellulose, pectin, and protein families of cell wall components. Wood destructuration at 80˚C with the 1-ethyl-3-methylimidazolium bromide represents a good compromise of wood dissolution efficiency and low polysaccharide destruction.

References

[1]  Costa, G. and Plazanet, I. (2016) Plant Cell Wall, a Challenge for Its Characterisation. Advances in Biological Chemistry, 6, 70-105.
https://doi.org/10.4236/abc.2016.63008
[2]  Plazanet, I., Zerrouki, R., Lhernould, S., Breton, C. and Costa, G. (2015) Direct Immunological Detection of Wood Cell Wall Polysaccharides after Microwave-Assisted Ionic Liquid Disruption. Journal of Glycobiology, 4, 2.
[3]  Seddon, K.R. (1997) Ionic Liquids for Clean Technology. Journal of Chemical Technology & Biotechnology, 68, 351-356.
https://doi.org/10.1002/(SICI)1097-4660(199704)68:4<351::AID-JCTB613>3.0.CO;2-4
[4]  Forsyth, S.A., Pringle, J.M. and MacFarlane, D.R. (2004) Ionic Liquids—An Overview. Australian Journal of Chemistry, 57, 113-119.
https://doi.org/10.1071/CH03231
[5]  Lee, S.H. and Lee, S.B. (2005) The Hildebrand Solubility Parameters, Cohesive Energy Densities and Internal Energies of 1-Alkyl-3-Methylimidazolium-Based Room Temperature Ionic Liquids. Chemical Communications, No. 27, 3469-3471.
https://doi.org/10.1039/b503740a
[6]  Welton, T. (1999) Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis. Chemical Reviews, 99, 2071-2084.
https://doi.org/10.1021/cr980032t
[7]  Patel, D.D. and Lee, J.-M. (2012) Applications of Ionic Liquids. The Chemical Record, 12, 329-355.
https://doi.org/10.1002/tcr.201100036
[8]  Tan, S.S.Y. and MacFarlane, D.R. (2009) Ionic Liquids in Biomass Processing. In: Kirchner, B., Ed., Ionic Liquids, Springer, Berlin, 311-339.
https://doi.org/10.1007/128_2008_35
[9]  Diop, A., Bouazza, A.H., Daneault, C. and Montplaisir, D. (2013) New Ionic Liquid for the Dissolution of Lignin. BioResources, 8, 4270-4282.
https://doi.org/10.15376/biores.8.3.4270-4282
[10]  Fort, D.A., Remsing, R.C., Swatloski, R.P., Moyna, P., Moyna, G. and Rogers, R.D. (2007) Can Ionic Liquids Dissolve Wood? Processing and Analysis of Lignocellulosic Materials with 1-n-Butyl-3-Methylimidazolium Chloride. Green Chemistry, 9, 63.
https://doi.org/10.1039/B607614A
[11]  Kilpeläinen, I., Xie, H., King, A., Granstrom, M., Heikkinen, S. and Argyropoulos, D.S. (2007) Dissolution of Wood in Ionic Liquids. Journal of Agricultural and Food Chemistry, 55, 9142-9148.
https://doi.org/10.1021/jf071692e
[12]  Sun, N., Rahman, M., Qin, Y., Maxim, M.L., Rodríguez, H. and Rogers, R.D. (2009) Complete Dissolution and Partial Delignification of Wood in the Ionic Liquid 1-ethyl-3-methylimidazolium Acetate. Green Chemistry, 11, 646.
https://doi.org/10.1039/b822702k
[13]  Marcus, S.E., Verhertbruggen, Y., Hervé, C., Ordaz-Ortiz, J.J., Farkas, V., Pedersen, H.L., Willats, W.G. and Knox, J.P. (2008) Pectic Homogalacturonan Masks Abundant Sets of Xyloglucan Epitopes in Plant Cell Walls. BMC Plant Biology, 8, 60.
https://doi.org/10.1186/1471-2229-8-60
[14]  McCartney, L., Marcus, S.E. and Knox, J.P. (2005) Monoclonal Antibodies to Plant Cell Wall Xylans and Arabinoxylans. Journal of Histochemistry & Cytochemistry, 53, 543-546.
https://doi.org/10.1369/jhc.4B6578.2005
[15]  Marcus, S.E., Blake, A.W., Benians, T.A.S., Lee, K.J.D., Poyser, C., Donaldson, L., Leroux, O., Rogowski, A., Petersen, H.L., Boraston, A., et al. (2010) Restricted Access of Proteins to Mannan Polysaccharides in Intact Plant Cell Walls: Masking of Mannan Polysaccharides. The Plant Journal, 64, 191-203.
https://doi.org/10.1111/j.1365-313X.2010.04319.x
[16]  Pedersen, H.L., Fangel, J.U., McCleary, B., Ruzanski, C., Rydahl, M.G., Ralet, M.-C., Farkas, V., von Schantz, L., Marcus, S.E. andersen, M.C., et al. (2012) Versatile High Resolution Oligosaccharide Microarrays for Plant Glycobiology and Cell Wall Research. Journal of Biological Chemistry, 287, 39429-39438.
https://doi.org/10.1074/jbc.M112.396598
[17]  Pattathil, S., Avci, U., Baldwin, D., Swennes, A.G., McGill, J.A., Popper, Z., Bootten, T., Albert, A., Davis, R.H., Chennareddy, C., et al. (2010) A Comprehensive Toolkit of Plant Cell Wall Glycan-Directed Monoclonal Antibodies. Plant Physiology, 153, 514-525.
https://doi.org/10.1104/pp.109.151985
[18]  Jones, L., Seymour, G.B. and Knox, J.P. (1997) Localization of Pectic Galactan in Tomato Cell Walls Using a Monoclonal Antibody Specific to (1[→]4)-[beta]-D-Galactan. Plant Physiology, 113, 1405-1412.
https://doi.org/10.1104/pp.113.4.1405
[19]  Willats, W.G., Marcus, S.E. and Knox, J.P. (1998) Generation of a Monoclonal Antibody Specific to (1→5)-α-l-Arabinan. Carbohydrate Research, 308, 149-152.
https://doi.org/10.1016/S0008-6215(98)00070-6
[20]  Verhertbruggen, Y., Marcus, S.E., Haeger, A., Ordaz-Ortiz, J.J. and Knox, J.P. (2009) An Extended Set of Monoclonal Antibodies to Pectic Homogalacturonan. Carbohydrate Research, 344, 1858-1862.
https://doi.org/10.1016/j.carres.2008.11.010
[21]  Knox, J.P., Linstead, P.J., King, J., Cooper, C. and Roberts, K. (1990) Pectin Esterification Is Spatially Regulated both within Cell Walls and between Developing Tissues of Root Apices. Planta, 181, 512-521.
https://doi.org/10.1007/BF00193004
[22]  Yates, E.A., Valdor, J.F., Haslam, S.M., Morris, H.R., Dell, A., Mackie, W. and Knox, J.P. (1996) Characterization of Carbohydrate Structural Features Recognised by Anti-Arabinogalactan-Protein Monoclonal Antibodies. Glycobiology, 6, 131-139.
https://pubmed.ncbi.nlm.nih.gov/8727785
https://doi.org/10.1093/glycob/6.2.131
[23]  Ma, J., Wang, Y. and Yang, X. (2021) Fast Track to Acetate-Based Ionic Liquids: Preparation, Properties and Application in Energy and Petrochemical Fields. Topics in Current Chemistry (Cham), 379, 2.
https://doi.org/10.1007/s41061-020-00315-5
[24]  Wang, N., Jian, Y., Liu, S., Liu, Y. and Huang, K. (2012) Influence of Acetated-Based and Bromo-Based Ionic Liquids Treatment on Wool Dyeing with Acid Blue 7. Journal of Applied Polymer Science, 123, 3283-3291.
https://doi.org/10.1002/app.35017
[25]  Zhang, H., Wu, J.V. and Zhang, J. (2005) 1-Allyl-3-methylimidazolium Chloride Room Temperature Ionic Liquid: A New and Powerful Nonderivatizing Solvent for Cellulose. Macromolecules, 38, 8272-8277.
https://doi.org/10.1021/ma0505676
[26]  Poux, M., Cognet, P. and Gourdon, C. (2010) Génie des procédés durables: Du concept à la concrétisation industrielle. Dunod, Paris.
[27]  Weingärtner, H. (2008) Understanding Ionic Liquids at the Molecular Level: Facts, Problems, and Controversies. Angewandte Chemie International Edition, 47, 654-670.
https://doi.org/10.1002/anie.200604951
[28]  Zavrel, M., Bross, D., Funke, M., Büchs, J. and Spiess, A.C. (2009) High-Throughput Screening for Ionic Liquids Dissolving (Ligno-)cellulose. Bioresource Technology, 100, 2580-2587.
https://doi.org/10.1016/j.biortech.2008.11.052
[29]  Dadi, A.P., Varanasi, S. and Schall, C.A. (2006) Enhancement of Cellulose Saccharification Kinetics Using an Ionic Liquid Pretreatment Step. Biotechnology and Bioengineering, 95, 904-910.
https://doi.org/10.1002/bit.21047
[30]  Dadi, A.P., Schall, C.A. and Varanasi, S. (2007) Mitigation of Cellulose Recalcitrance to Enzymatic Hydrolysis by Ionic Liquid Pretreatment. In: Applied Biochemistry and Biotecnology, Springer, Berlin, 407-421.
https://doi.org/10.1007/978-1-60327-181-3_35
[31]  Brandt, A., Gräsvik, J., Hallett, J.P. and Welton, T. (2013) Deconstruction of Lignocellulosic Biomass with Ionic Liquids. Green Chemistry, 15, 550-583.
https://doi.org/10.1039/c2gc36364j
[32]  Crowhurst, L., Mawdsley, P.R., Perez-Arlandis, J.M., Salter, P.A. and Welton, T. (2003) Solvent-Solute Interactions in Ionic Liquids. Physical Chemistry Chemical Physics, 5, 2790-2794.
https://doi.org/10.1039/B303095D
[33]  Muhammad, N., Man, Z. and Bustam Khalil, M.A. (2012) Ionic Liquid—A Future Solvent for the Enhanced Uses of Wood Biomass. European Journal of Wood and Wood Products, 70, 125-133.
https://doi.org/10.1007/s00107-011-0526-2
[34]  Oehlke, A., Hofmann, K. and Spange, S. (2006) New Aspects on Polarity of 1-Alkyl-3-Methylimidazolium Salts as Measured by Solvatochromic Probes. New Journal of Chemistry, 30, 533-536.
https://doi.org/10.1039/b516709d
[35]  Suota, M.J., Da Silva, T.A., Sassaki, G.L., Hansel, F.A., Michael Paleologou, M. and Ramos, L.P. (2021) Chemical and Structural Characterization of Hardwood and Softwood LignoForce™ Lignins. Industrial Crops and Products, 173, Article ID: 114138.
https://doi.org/10.1016/j.indcrop.2021.114138
[36]  Donaldson, L.A. and Baas, P. (2019) Wood Cell Wall Ultrastructure. IAWA Journal, 40, 643-644.
https://doi.org/10.1163/22941932-40190260
[37]  Kilpeläinen, I., Xie, H., King, A., Granstrom, M., Heikkinen, S. and Argyropoulos, D.S. (2007) Dissolution of Wood in Ionic Liquids. Journal of Agricultural and Food Chemistry, 55, 9142-9148.
https://doi.org/10.1021/jf071692e
[38]  Padmanabhan, S., Kim, M., Blanch, H.W. and Prausnitz, J.M. (2011) Solubility and Rate of Dissolution for Miscanthus in Hydrophilic Ionic Liquids. Fluid Phase Equilibria, 309, 89-96.
https://doi.org/10.1016/j.fluid.2011.06.034
[39]  Swatloski, R.P., Spear, S.K., Holbrey, J.D. and Rogers, R.D. (2002) Dissolution of Cellulose with Ionic Liquids. Journal of the American Chemical Society, 124, 4974-4975.
https://doi.org/10.1021/ja025790m
[40]  Pattathil, S., Avci, U., Miller, J.S. and Hahn, M.G. (2012) Immunological Approaches to Plant Cell Wall and Biomass Characterization: Glycome Profiling. Methods in Molecular Biology, 908, 61-72.
https://doi.org/10.1007/978-1-61779-956-3_6
[41]  Åkerholm, M. (2003) Ultrastructural Aspects of Pulp Fibers as Studied by Dynamic FT-IR Spectroscopy. Swedish University of Agricultural Sciences, Uppsala.
http://www.diva-portal.org/smash/get/diva2:9438/FULLTEXT01.pdf
[42]  Salmén, L. and Olsson, A.-M. (1998) Interaction between Hemicelluloses, Lignin and Cellulose: Structure-Property Relationships. Journal of Pulp and Paper Science, 24, 99-103.
https://pascal-francis.inist.fr/vibad/index.php?action=search&lang=fr&terms=%220826-6220%22&index=is
[43]  Ebringerova, A., Hromadkova, Z. and Heinze, T. (2005) Hemicellulose. In: Heinze, T., Ed., Polysaccharides I, Springer, Berlin, 1-67.
https://doi.org/10.1007/b136816
[44]  Kačuráková, M., Belton, P.S., Wilson, R.H., Hirsch, J. and Ebringerová, A. (1998) Hydration Properties of Xylan-Type Structures: An FTIR Study of Xylooligosaccharides. Journal of the Science of Food and Agriculture, 77, 38-44.
https://doi.org/10.1002/(SICI)1097-0010(199805)77:1<38::AID-JSFA999>3.0.CO;2-5
[45]  Socha, A.M., Parthasarathi, R., Shi, J., Pattathil, S., Whyte, D., Bergeron, M., George, A., Tran, K., Stavila, V., Venkatachalam, S., et al. (2014) Efficient Biomass Pretreatment Using Ionic Liquids Derived from Lignin and Hemicellulose. Proceedings of the National Academy of Sciences of the United States of America, 111, E3587-E3595.
https://doi.org/10.1073/pnas.1405685111
[46]  Karatzos, S.K., Edye, L.A. and Wellard, R.M. (2012) The Undesirable Acetylation of Cellulose by the Acetate Ion of 1-ethyl-3-methylimidazolium Acetate. Cellulose, 19, 307-312.
https://doi.org/10.1007/s10570-011-9621-0
[47]  Yang, D., Zhong, L.-X., Yuan, T.-Q., Peng, X.-W. and Sun, R.-C. (2013) Studies on the Structural Characterization of Lignin, Hemicelluloses and Cellulose Fractionated by Ionic Liquid Followed by Alkaline Extraction from Bamboo. Industrial Crops and Products, 43, 141-149.
https://doi.org/10.1016/j.indcrop.2012.07.024
[48]  Pattathil, S., Hahn, M.G., Dale, B.E. and Chundawat, S.P. (2015) Insights into Plant Cell Wall Structure, Architecture, and Integrity Using Glycome Profiling of Native and AFEXTM-Pre-Treated Biomass. Journal of Experimental Botany, 66, 4279-4294.
https://doi.org/10.1093/jxb/erv107

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413