全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Antarctic Macroalgae Palmaria decipiens (Rhodophyta, Palmariales) Extracts Present Antioxidant and Antitumor Activity against Colorectal Cancer

DOI: 10.4236/abc.2022.126022, PP. 274-291

Keywords: Antarctic Seaweeds, Antitumor Activity, Colorectal Cancer, Antioxidant Activity

Full-Text   Cite this paper   Add to My Lib

Abstract:

Despite therapeutic advances in recent decades, colorectal cancer is still the third most frequent neoplasm worldwide, with significant morbidity and mortality in young and middle-aged adults. Therefore, advance in treatment options for patients who are afflicted with tumor subtypes without effective therapies is needed. Antarctica macroalgae are substances-producing organisms with important biological activities, in which antitumor properties are investigated, showing promising cytotoxic results. There are no reports so far showing antitumor activity of macroalgae Palmaria decipiens extracts against colorectal tumors. This study aims to evaluate the effect of macroalgae P. decipiens extract from Antarctic on tumor cell HCT-116 and non-tumor cell HaCaT lines. The phenolic compounds present were identified by high performance liquid chromatography. The antioxidant activity of the extracts was determined by the DPPH radical inhibition method and cytotoxicity was evaluated through MTT assay. Cell death events were identified using dual staining with acridine orange/ethidium bromide and flow cytometry. The quantification of phenolic compounds present in the extracts identified the presence of three main compounds among them is kaempferol. The metanolic extract showed inhibition within 72 h of treatment in HCT-116 and potential antioxidant activity. The results presented in this study point out an imbalance in the redox metabolism and also a loss of mitochondrial membrane potential integrity, most likely inducing cell death mechanisms after 72 h exposure to treatment with metanolic extract. These events could be observed by penetration of propidium iodide through membrane damage. The results indicate that the extract of the Antarctic macroalgae P. decipiens interferes in the mechanisms of action of colorectal cancer tumor cells, acting as a potential antitumor and antioxidant agent.

References

[1]  Simões, M.L. and Barbosa, L.E. (2017) Obesidade: Impacto no Carcinoma Colorretal. Revista Portuguesa de Cirurgia, 42, 17-32.
[2]  INCA Instituto Nacional de Cancer José Alencar Gomes da Silva (2020) Estimativa 2020: Incidência de cancer no Brasil/Instituto Nacional de Cancer José Alencar Gomes da Silva. INCA, Rio de Janeiro.
[3]  American Cancer Society (2019) Cancer Facts & Figures 2019. American Cancer Society, Atlanta.
[4]  Sevak, H.P., et al. (2012) Algicidal Activity and Potencial Antifouling Defenses in Macroalgae from the Western Antarctica Peninsula Including Probable Synergistic Effects of Multiple Compounds. Botanica Marina, 55, 311-315.
https://doi.org/10.1515/bot-2012-0111
[5]  Martins, R.M., et al. (2014) Antimicrobial and Cytotoxic Activities of Seaweeds Extracts from Antarctica. XLIII Reunião Anual da Sociedade Brasileira de Bioquímica e Biologia Molecular.
[6]  Moles, J., et al. (2014) Anti-Inflamatory Activity in Selected Antarctic Benthic Organisms. Frontiers in Marine Science, 1, Article No. 5.
https://doi.org/10.3389/fmars.2014.00024
[7]  Nuñez-Pons, L. and Avila, C. (2014) Deterrent Activities in the Crude Lipophilic Fractions of Antarctic Benthic Organisms: Chemical Defenses against Keystone Predators. Polar Research, 33, 21624-21636.
https://doi.org/10.3402/polar.v33.21624
[8]  Marinho, S.S.R., et al. (2017) Antiviral Activity of 7-Keto-Stigmasterol Obtained from Green Antarctic Algae Prasiola crispa Again Stequine Herpes Virus. Journal of Applied Phycology, 29, 555-562.
https://doi.org/10.1007/s10811-016-0946-9
[9]  Santos, M.A.Z., et al. (2017) Antarctic Red Macroalgae: A Source of Polyunsaturated Fatty Acids. Journal of Applied Phycology, 29, 759-767.
https://doi.org/10.1007/s10811-016-1034-x
[10]  Silva Filho, I.J. (2018) Estudo químico bioguiado da macroalga marinha da Antártica Desmarestia menziesii (Phaeophyceae) para isolamento de substancias com atividades biológicas. Tese apresentada para obtenção do título de Mestre em biodiversidade vegetal e meio ambiente. Instituto de Botanica da Secretaria de Estado do Meio Ambiente, São Paulo.
[11]  Khalid, S., et al. (2018) Potencial terapêutico de compostos bioativos de algas marinhas. Em S. Maiti. Biomateriais de algas marinhas, 1-19.
[12]  Moussavou, G., et al. (2014) Anticancer Effects of Different Seaweeds on Human Colon and Breast Cancers. Marine Drugs, 12, 4898-4911.
https://doi.org/10.3390/md12094898
[13]  Frassini, R., da Silva, Y.P., Moura, S., Villela, L.Z., Martins, A.P., Colepicolo, P., Fujii, M.T., Yokoya, N.S., de Pereira, C.M.P., Pereira, V.R.Z.B., Henriques, J.A.P. and Roesch-Ely, M. (2019) Chemical Characterization and Cytotoxic Activity of Antarctic Macroalgae Extracts against Colorectal Cancer. Advances in Biological Chemistry, 9, 167-177.
https://doi.org/10.4236/abc.2019.95013
[14]  Morelli, L.L.L. (2010) Avaliação de compostos fenólicos majoritários em geleia de uva produzida com a variedade IAC-138-22 (máximo) Dissertação de Mestrado. Universidade Estadual de Campinas, Campinas, 133 p.
[15]  Kim, Y.K., et al. (2002) Free Radical Scavenging Activity of Red Ginseng Aqueous Extracts. Toxicology, 172, 149-156.
https://doi.org/10.1016/S0300-483X(01)00585-6
[16]  Bernardi, J., et al. (2016) Preliminary Data of Antioxidant Activity of Green Seaweeds (Ulvophyceae) from the Southwestern Atlantic and Antarctic Maritime Islands. Hidrobiológica, 26, 233-239.
https://doi.org/10.24275/uam/izt/dcbs/hidro/2016v26n2/Bernardi
[17]  Garcia, C.S.C., et al. (2016) Pharmacological Perspectives from Brazilian Salvia Officinalis (Lamiaceae): Antioxidant, and Antitumor in Mammalian Cells. Anais da Academia Brasileira de Ciências, 88, 281-292.
https://doi.org/10.1590/0001-3765201520150344
[18]  Nersesyan, A., et al. (2006) Effect of Staining Procedures on the Results of Micronucleus Assays with Exfoliated Oral Mucosa Cells. Cancer Epidemiology, Biomarkers & Prevention, 15, 1835-1840.
https://doi.org/10.1158/1055-9965.EPI-06-0248
[19]  Cury-Boaventura, M., et al. (2006) Comparative Toxicity of Oleic and Linoleic Acid on Human Lymphocytes. Life Sciences, 78, 1448-1456.
https://doi.org/10.1016/j.lfs.2005.07.038
[20]  Almeida, V.M., et al. (2019) Triagem de drogas anticancer: Padronização do ensaio de ranhura in Vitro. Jornal Brasileiro de Patologia e Medicina Laboratorial, 55, 606-619.
https://doi.org/10.5935/1676-2444.20190054
[21]  Aranda, A., et al. (2013) Dichloro-dihydro-fluorescein Diacetate (DCFH-DA) Assay: A Quantitative Method for Oxidative Stress Assessment of Nanoparticle-Treated Cells. Toxicol In Vitro, 27, 954-963.
https://doi.org/10.1016/j.tiv.2013.01.016
[22]  Gómez-Guzmán, M., et al. (2018) Potential Role of Seaweed Polyphenols in Cardiovascular-Associated Disorder. Marine Drugs, 16, 250.
https://doi.org/10.3390/md16080250
[23]  Ismail, G.A., et al. (2019) In Vitro Potential Activity of Some Seaweeds as Antioxidants and Inhibitors of Diabetic Enzymes. Food Science and Technology (Campinas), 40, 681-691.
https://doi.org/10.1590/fst.15619
[24]  Palacios, I., et al. (2011) Antioxidant Properties of Phenolic Compounds Occurring in Edible Mushrooms. Food Chemistry, 128, 674-678.
https://doi.org/10.1016/j.foodchem.2011.03.085
[25]  Santos, R.A., et al. (2021) Analysis of Phenolic Compounds from Cowpea (Vigna unguiculata) by HPLC-DAD-MS/MS. Brazilian Journal of Food Technology, 24, 1-9.
https://doi.org/10.1590/1981-6723.07720
[26]  Al-Ghamdia, M.A., et al. (2023) Enhancement of Annexin V in Response to Combination of Epigallocatechin Gallate and Quercetin as a Potent Arrest the Cell Cycle of Colorectal Cancer. Brazilian Journal of Biology, 83, e248746.
https://doi.org/10.1590/1519-6984.248746
[27]  Gichner, T., et al. (1987) Two Types of Antimutagenic Effects of Gallic and Tannic Acids towards N-Nitroso-Compounds-Induced Mutagenicity in the Ames Salmonella Assay. Folia Microbiologica, 32, 55-62.
https://doi.org/10.1007/BF02877259
[28]  Locatelli, C., et al. (2013) Alkyl Esters of Gallic Acid as Anticancer Agents: A Review. European Journal of Medicinal Chemistry, 60, 233-239.
https://doi.org/10.1016/j.ejmech.2012.10.056
[29]  Hanahan, D. and Weinberg, R.A. (2000) The Hallmarks of Cancer. Cell, 100, 57-70.
https://doi.org/10.1016/S0092-8674(00)81683-9
[30]  Hanahan, D. and Weinberg, R.A. (2011) Hallmarks of Cancer: The Next Generation. Cell, 144, 646-674.
https://doi.org/10.1016/j.cell.2011.02.013
[31]  Rho, H. S., et al. (2011) Kaempferol and Kaempferol Rhamnosides with Depigmenting and Anti-Inflammatory Properties. Molecules, 16, 3338-3344.
https://doi.org/10.3390/molecules16043338
[32]  Mercader-Ros, M., et al. (2013) Biological Activities of Kaempferol: Effect of Cyclodextrins Complexation on the Properties of Kaempferol. Nova Science, New York, 1-31.
[33]  Cardozo, K.H.M., et al. (2011) Analyses of Photoprotective Compounds in Red Algae from the Brazilian Coast. Revista Brasileira de Farmacognosia, 21, 202-208.
https://doi.org/10.1590/S0102-695X2011005000047
[34]  Dellai, A., Laajili, S., Le Morvanb, V., Robert, J. and Bouraoui, A. (2013) Antiproliferative Activity and Phenolics of the Mediterranean Seaweed Laurencia obusta. Industrial Crops and Products, 47, 252-255.
https://doi.org/10.1016/j.indcrop.2013.03.014
[35]  Alves, C., Pinteus, S., Horta, A., et al. (2016) High Cytotoxicity and Anti-Proliferative Activity of Algae Extracts on an in Vitro Model of Human Hepatocellular Carcinoma. SpringerPlus, 5, Article No. 1339.
https://doi.org/10.1186/s40064-016-2938-2
[36]  Martins, R., et al. (2018) Macroalgae Extracts from Antarctica Have Antimicrobial and Anticancer Potential. Frontiers in Microbiology, 9, Article No. 412.
https://doi.org/10.3389/fmicb.2018.00412
[37]  Mamani, J., et al. (2020) Antioxidant Activity and Total Phenolic Content in Caulerpa filiformis (Chlorophyta) from Sechura Bay and Paracas Bay, Peru. Revista Peruana de Biología, Lima, 27, 61-66.
https://doi.org/10.15381/rpb.v27i1.17596
[38]  Mayer, A.M.S., et al. (2017) Marine Pharmacology in 2012-2013: Marine Compounds with Antibacterial, Antidiabetic, Antifungal, Anti-Inflammatory, Antiprotozoal, Antituberculosis, and Antiviral Activities; Affecting the Immune and Nervous Systems, and Other Miscellaneous Mechanisms of Action. Marine Drugs, 15, 273.
https://doi.org/10.3390/md15090273
[39]  Santos-Sánchez, N.F., Salas-Coronado, R., Villanueva-Cañongo, C. and Hernández-Carlos, B. (2019) Antioxidant Compounds and Their Antioxidant Mechanism. In: Antioxidants, IntechOpen, London.
[40]  Gutierrez-Rodriguez, A.G., et al. (2018) Anticancer Activity of Seaweeds. Drug Discovery Today, 23, 434-447.
https://doi.org/10.1016/j.drudis.2017.10.019
[41]  Al Monla, R., et al. (2020) The Cytotoxic and Apoptotic Effects of the Brown Algae Colpomenia sinuosa Are Mediated by the Generation of Reactive Oxygen Species. Molecules (Basel, Switzerland), 25, 1993.
https://doi.org/10.3390/molecules25081993
[42]  Scariot, F.J., et al. (2016) The Fungicide Mancozeb Induces Metacaspase-Dependent Apoptotic Cell Death in Saccharomyces cerevisiae BY4741. Apoptosis, 21, 866-872.
https://doi.org/10.1007/s10495-016-1251-4
[43]  Adan, A., Alizada, G., Kiraz, Y., Baran, Y. and Nalbant, A. (2017) Flow Cytometry: Basic Principles and Applications. Critical Reviews in Biotechnology, 37, 163-176.
https://doi.org/10.3109/07388551.2015.1128876
[44]  Obeng, E. (2021) Apoptosis (Programmed Cell Death) and Its Signals—A Review. Brazilian Journal of Biology, 81, 1133-1143.
https://doi.org/10.1590/1519-6984.228437
[45]  Duensing, T.D. and Watson, S.R. (2018) Assessment of Apoptosis (Programmed Cell Death) by Flow Cytometry. Cold Spring Harbor Laboratory Press, Cold Spring Harbor.
https://doi.org/10.1101/pdb.prot093807

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133