Lima bean is a tropical and subtropical legume from the genus Phaseolus which is cultivated for its importance in food and in medicine, but which remains a Neglected and Underutilized Crop in Benin. Understanding the genetic diversity of a species’ genetic resources is useful for the establishment of appropriate conservation strategies and breeding programs and for sustainable use. We use 6 out of ten SSR markers to analyze the diversity and population structure of 28 Lima bean landraces collected in Benin. A total of 28 alleles with an average of 4.16 alleles per SSR were amplified. The Polymorphic Information Content value ranged from 0.079 to 0.680 with an average of 0.408. The analysis of population structure revealed three subpopulations. PCoA revealed three well-separated clusters among the analyzed accessions in accordance with the population structure results and the clustering based on the Neighbor-Joining tree. AMOVA showed highly significant (p = 0.001) diversity among and within populations. Hence, 32% of the genetic variation was distributed among the population and 68% was distributed within populations. A high PhiP value (0.321) was found between the three sub-subpopulations indicating a high genetic differentiation between these sub-subpopulations. By exhibiting the highest average number of alleles, Shannon-Weaver information and Shannon-Weaver diversity indices, and the highest mean number of private alleles, subpopulation 1 is the main gene pool of the analyzed collection. The present study is an important starting point for the establishment of appropriate conservation strategies and breeding programs for Lima bean genetic resources.
References
[1]
Heuzé, V., Tran, G., Sauvant, D., Bastianelli, D. and Lebas, F. (2015) Lima Bean (Phaseolus lunatus). Feedipedia, a Program by INRA, CIRAD, AFZ, and FAO.
http://www.feedipedia.org/node/267
[2]
Nasir, L., Feyissa, T. and Asfaw, Z. (2021) Genetic Diversity Analysis of Lima Bean (Phaseolus lunatus L.) Landrace from Ethiopia as Reve by ISSR Marker. SINET: Ethiopian Journal of Science, 44, 81-90. https://doi.org/10.4314/sinet.v44i1.8
[3]
Tchumou, M., Yao, B., Kossonou, Y.K., Adingra, K.M.D. and Tano, K. (2017) Enquête ethnobotanique sur l’importance alimentaire et socio-économique des graines de (Phaseolus lunatus (L.)) consommées au Sud et Est de la Cote d’Ivoire. International Journal of Innovation and Applied Studies, 21, 388-397.
[4]
Gepts, P. (2014) The Contribution of Genetic and Genomic Approaches to Plant Domestication Studies. Current Opinion in Plant Biology, 18, 51-59.
https://doi.org/10.1016/j.pbi.2014.02.001
[5]
Camacho-Pérez, L., Martínez-Castillo, J., Mijangos-Cortés, J.O., Ferrer-Ortega, M., Baudoin, J.P. and Andueza-Noh, R.H. (2018) Genetic Structure of Lima Bean (Phaseolus lunatus L.) Landraces Grown in the Mayan Area. Genetic Resources and Crop Evolution, 65, 229-241. https://doi.org/10.1007/s10722-017-0525-1
[6]
Dansi, A., Vodouhe, R., Azokpota, P., Yedomonhan, H., Assogba, P., Adjatin, A., Loko, Y.L., Dossou-Aminon, I. and Akpagana, K. (2012) Diversity of the Neglected and Underutilized Crop Species of Importance in Benin. The Science World Journal, 2012, Article ID: 932947. https://doi.org/10.1100/2012/932947
[7]
Kinhoégbè, G., Djèdatin, G., Saxena, R.K., Chitikineni, A., Bajaj, P., Molla, J., Agbangla, C., Dansi, A. and Varshney, R.K. (2022) Genetic Diversity and Population Structure of Pigeonpea (Cajanus cajan [L.] Millspaugh) Landraces Grown in Benin Revealed by Genotyping-by-Sequencing. PLOS ONE, 17, e0271565.
https://doi.org/10.1371/journal.pone.0271565
[8]
Dissanayake, R., Braich, S., Cogan, N., Smith, K. and Kaur, S. (2020) Characterization of Genetic and Allelic Diversity Amongst Cultivated and Wild Lentil Accessions for Germplasm Enhancement. Frontiers in Genetics, 11, Article 546.
https://doi.org/10.3389/fgene.2020.00546
[9]
Khazaei, H., Caron, C.T., Fedoruk, M., Diapari, M., Vandenberg, A., Coyne, C.J., McGee, R. and Bett, K.E. (2016) Genetic Diversity of Cultivated Lentil (Lens culinaris Medik.) and Its Relation to the World’s Agro-Ecological Zones. Frontiers in Plant Science, 26, Article 1093. https://doi.org/10.3389/fpls.2016.01093
[10]
Cheng, J., Qin, C., Tang, X., Zhou, H., Hu, Y., Zhao, Z., Hu, K., et al. (2016) Development of a SNP Array and Its Application to Genetic Mapping and Diversity Assessment in Pepper (Capsicum spp.). Scientific Reports, 6, Article No.33293.
https://doi.org/10.1038/srep33293
[11]
Penha, J.S., Lopes, A.C.A., Gomes, R.L.F., Pinheiro, J.B., Filho, J.R.A., Silvestre, E.A., Viana, J.P.G. and Martínez-Castillo, J. (2017) Estimation of Natural Outcrossing Rate and Genetic Diversity in Lima Bean (Phaseolus lunatus L. var. Lunatus) from Brazil Using SSR Markers: Implications for Conservation and Breeding. Genetic Resources and Crop Evolution, 64, 1355-1364.
https://doi.org/10.1007/s10722-016-0441-9
[12]
Sharma, S., Dastagiri, M.B. and Reddy, M.N. (2017) Morphological Variation and Evaluation of Gladiolus (Gladiolus Hybridus hort.) Cultivars. Journal of Horticulture, 4, Article ID: 1000212. https://doi.org/10.4172/2376-0354.1000212
[13]
Chalak, A.L., Vaikar, S.L. and Barangule, S. (2018) Effect of Varying Levels of Potassium and Zinc on Yield, Yield Attributes, Quality of Pigeon Pea (Cajanus cajan L. Millsp.). International Journal of Chemical Studies, 6, 1432-1435.
[14]
Hasan, N., Choudhary, S., Naaz, N., Sharma, N. and Laskar, R.A. (2021) Recent Advancements in Molecular Marker-Assisted Selection and Applications in Plant Breeding Programmes. Journal of Genetic Engineering and Biotechnology, 19, Article No. 128. https://doi.org/10.1186/s43141-021-00231-1
[15]
Mishra, K.K., Fougat, R.S., Ballani, A., Vinita, T., Yachana, J. and Madhumati, B. (2014) Potential and Application of Molecular Markers Techniques for Plant Genome Analysis. Indian Journal of Pure & Applied Biosciences, 2, 169-188.
[16]
Danny, H., Teresa, B., Daniela, M.O.B., Camila, N.S.O., Lidio, C., Victor, W., Lusike, W., John, M., Aurillia, M., Gamini, W.L.S., Terrence, M., Harshani, V.H.N., Ayfer, T., Saadet, T.A., Nurcan, G., Nina, L., Eliot, G. and Florence, T. (2019) The Potential of Neglected and Underutilized Species for Improving Diets and Nutrition. Planta, 250, 709-729. https://doi.org/10.1007/s00425-019-03169-4
[17]
Li, X. and Siddique, K.H.M. (2018) Future Smart Food—Rediscovering Hidden Treasures of Neglected and Underutilized Species for Zero Hunger in Asia. FAO, Bangkok. https://doi.org/10.18356/23b5f7ab-en
[18]
Li, X., Yadav, R. and Siddique, K.H.M. (2020) Neglected and Underutilized Crop Species: The Key to Improving Dietary Diversity and Fighting Hunger and Malnutrition in Asia and the Pacific. Frontiers in Nutrition, 7, Article 593711.
https://doi.org/10.3389/fnut.2020.593711
[19]
FAO, IFAD, UNICEF, WFP and WHO (2019) The State of Food Security and Nutrition in the World 2019. Safeguarding against Economic Slowdowns and Downturns. FAO, Rome.
[20]
Chiurugwi, T., Kemp, S., Powell, W. and Hickey, L.T. (2019) Speed Breeding Orphan Crops. Theoretical and Applied Genetics, 132, 607-616.
https://doi.org/10.1007/s00122-018-3202-7
[21]
Dawson, I.K., McMullin, S., Kindt, R., Muchugi, A., Hendre, P., Lilleso, J.P.B. and Jamnadass, R. (2019) Delivering Perennial New and Orphan Crops for Resilient and Nutritious Farming Systems. In: Rosenstock, T.S., Girvetz, E. and Nowak, A., Eds., The Climate-Smart Agriculture Papers, Springer, Cham, 113-125.
https://doi.org/10.1007/978-3-319-92798-5_10
[22]
Li, X. and Siddique, K.H.M. (2020) Future Smart Food: Harnessing the Potential of Neglected and Underutilized Species for Zero Hunger. Maternal & Child Nutrition, 16, e13008. https://doi.org/10.1111/mcn.13008
[23]
Zavinon, F., Adoukonou-Sagbadja, H., Keilwagen, J., Lehnert, H. and Ordon, F.P. (2020) Genetic Diversity and Population Structure in Beninese Pigeon Pea [Cajanus cajan (L.) Huth] Landraces Collection Revealed by SSR and Genome Wide SNP Markers. Genetic Resources and Crop Evolution, 67, 191-208.
https://doi.org/10.1007/s10722-019-00864-9
[24]
Akohoue, F., Achigan-Dako, E.G., Sneller, C., Van, D.A. and Sibiya, J. (2020) Genetic Diversity, SNP-Trait Associations and Genomic Selection Accuracy in a West African Collection of Kersting’s Groundnut [Macrotyloma geocarpum (Harms) Maréchal & Baudet]. PLOS ONE, 15, e0234769.
https://doi.org/10.1371/journal.pone.0234769
[25]
Chen, H., Rangasamy, M., Tan, S.Y., Wang, H. and Siegfried, B.D. (2010) Evaluation of Five Methods for Total DNA Extraction from Western Corn Rootworm Beetles. PLOS ONE, 5, e11963. https://doi.org/10.1371/journal.pone.0011963
[26]
Gaitán-Solís, E., Duque, M.C., Edwards, K.J. and Tohme, J. (2002) Microsatellite Repeats in Common Bean (Phaseolus vulgaris L.): Isolation, Characterization, and Cross-Species Amplification in Phaseolus ssp. Crop Science, 42, 2128-2136.
https://doi.org/10.2135/cropsci2002.2128
[27]
Gomes, R.L.F., Costa, M.F., Alves-Pereira, A., Bajay, M.M., et al. (2020) A Lima Bean Core Collection Based on Molecular Markers. Scientia Agricola, 77, e20180140.
https://doi.org/10.1590/1678-992x-2018-0140
[28]
Kempf, K., Mora-Ortiz, M., Smith, L.M.J., et al. (2016) Characterization of Novel SSR Markers in Diverse Sainfoin (Onobrychis viciifolia) Germplasm. BMC Genetics, 17, Article No. 124. https://doi.org/10.1186/s12863-016-0431-0
[29]
Perrier, X. and Jacquemoud-Collet, J.P. (2006) DARwin Software.
http://darwin.cirad.fr/
[30]
Pritchard, J.K., Stephens, M. and Donnelly, P. (2000) Inference of Population Structure Using Multilocus Genotype Data. Genetics, 155, 945-959.
https://doi.org/10.1093/genetics/155.2.945
[31]
Evanno, G., Regnaut, S. and Goudet, J. (2005) Detecting the Number of Clusters of Individuals Using the Software STRUCTURE: A Simulation Study. Molecular Ecology, 14, 2611-2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x
[32]
Earl, D.A. and Vonholdtb, M. (2012) Structure Harvester: A Website and Program for Visualizing Structure Output and Implementing the Evanno Method. Conservation Genetics Resources, 4, 359-361. https://doi.org/10.1007/s12686-011-9548-7
[33]
Peakall, R. and Smouse, P.E. (2012) GenAlEx 6.5: Genetic Analysis in Excel. Population Genetic Software for Teaching and Research—An Update. Bioinformatics, 28, 2537-2539. https://doi.org/10.1093/bioinformatics/bts460
[34]
Liu, Y.L., Geng, Y.P., Song, M.L., Zhang, P.F., Hou, J.L. and Wang, W. (2019) Genetic Structure and Diversity of Glycyrrhiza Populations Based on Transcriptome SSR Markers. Plant Molecular Biology Reporter, 37, 401-412.
https://doi.org/10.1007/s11105-019-01165-2
[35]
Vieira, M.L., Santini, L., Diniz, A.L. and Munhoz, C.F. (2016) Microsatellite Markers: What They Mean and Why They Are So Useful. Genetics and Molecular Biology, 39, 312-328. https://doi.org/10.1590/1678-4685-GMB-2016-0027
[36]
Gao, C.H., Ren, X.D., Mason, A.S., Li, J., Wang, W., Xiao, M. and Fu, D. (2013) Revisiting an Important Component of Plant Genomes: Microsatellites. Functional Plant Biology, 40, 645-645. https://doi.org/10.1071/FP12325
[37]
Reyes-Valdés, M.H. (2013) Informativeness of Microsatellite Markers. In: Kantartzi, S., Ed., Microsatellites. Methods in Molecular Biology, Humana Press, Totowa, NJ, 259-270. https://doi.org/10.1007/978-1-62703-389-3_18
[38]
Jo, K.R., Cho, S., Cho, J.H., Park, H.J, Choi, J.G., Park, Y.E. and Cho, K.S. (2022) Analysis of Genetic Diversity and Population Structure among Cultivated Potato Clones from Korea and Global Breeding Programs. Scientific Reports, 12, Article No. 10462. https://doi.org/10.1038/s41598-022-12874-2
[39]
Pandey, J., Scheuring, D.C., Koym, J.W., Coombs, J., Novy, R.G., Thompson, A.L., Holm, D.G., Douches, D.S., Miller, J.C. and Vales, M.I. (2021) Genetic Diversity and Population Structure of Advanced Clones Selected over Forty Years by a Potato Breeding Program in the USA. Scientific Reports, 11, Article No. 8344.
https://doi.org/10.1038/s41598-021-87284-x
[40]
Martinez, J.C., Ferrer, M.M. and Andueza, R. (2017) Genetic Structure of Lima Bean (Phaseolus lunatus L.) Landraces Grown in the Mayan Area. Genetic Resources and Crop Evolution, 10, 1007-1017.
[41]
Luo, Z.N., Brock, J., Dyer, J.M., Kutchan, T., Schachtman, D., Augustin, M., Ge, Y., Fahlgren, N. and Abdel-Haleem, H. (2019) Genetic Diversity and Population Structure of a Camelina Sativa Spring Panel. Frontiers in Plant Science, 10, Article 184.
https://doi.org/10.3389/fpls.2019.00184