全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Transitioning to Automated Microbiologic Era: Blood Culture Isolates in Children and Adults in Federal Teaching Hospital in Gombe, North East Nigeria 2016-2020

DOI: 10.4236/ojmm.2022.124016, PP. 184-203

Keywords: Children, Adults, Blood Culture Isolates, Bactec, Sensitivity

Full-Text   Cite this paper   Add to My Lib

Abstract:

Introduction: Automated blood culture systems for incubation and growth monitoring have become the standard in high-income countries (HICs), but are still relatively expensive and not universally available for implementation in most low- and middle-income countries (LMIC). We aimed to report blood culture isolates using Automated technique in children and adults admitted into the Federal Teaching Hospital Gombe from 2016 to 2020. Materials and Methods: Blood Culture Isolates in children (0 - 18 years) and adults (>19 yrs) by Bactec 9050 Automated culture system from 2016-2020 were retrieved from the medical and laboratory register. Information analyzed included, age, sex, month, and year and culture growth and reported antibiotic sensitivity. A Bactec Blood culture tests is $20 in this facility. In Nigeria, the minimum monthly wage is $70 (Official currency exchange rate is N423/US Dollar). Results: Of the 1713 blood cultures performed, children 0 - 18 years were 1322 (77.2%) and adult (19 years above) (22.8%). Overall positivity was 733 (42.2%) with males 385 (52.5%). Of the 1322 Blood cultures (BC) in children 615 (46.5%) were positive for isolates and adults 118 (30.2)%. Blood culture positivity decreased with increasing age with newborns 251 (34.5%) and adults > 65 years 18 (2.5%). Staphylococcus aureus constituted 61.3% of all isolates and was the leading isolates in all age groups; Alkaligenes (9.1%); Citrobacter 8.1%, Klebsiella 6.7%; Pseudomonas 6.1%; E. coli 2.7%; Enterococcus 2%; Proteus 1%. Of the Antimicrobial resistance priority isolates E. coli susceptibility ranged from 71% to Gentamycin and 100% to Cefixime; Klebsiella from 25% sensitivity to Amikacin to 78% each to chloramphenicol and

References

[1]  Cohen, J., Vincent, J.L., Adhikari, N.K.J., et al. (2015) Sepsis: A Roadmap for Future Research. The Lancet Infectious Diseases, 15, 581-614.
https://doi.org/10.1016/S1473-3099(15)70112-X
[2]  Kern, W.V. and Rieg, S. (2020) Burden of Bacterial Bloodstream Infection—A Brief Update on Epidemiology and Significance of Multi-Drug Resistant Pathogens. Clinical Microbiology and Infection, 26, 151-157.
https://doi.org/10.1016/j.cmi.2019.10.031
[3]  Reddy, E.A., Shaw, A.V. and Crump, J.A. (2010) Community-Acquired Bloodstream Infections in Africa: A Systematic Review and Metaanalysis. The Lancet Infectious Diseases, 10, 417-432.
https://doi.org/10.1016/S1473-3099(10)70072-4
[4]  Shrestha, P., Dahal, P., Ogbonnaa-Njoku, C., Das, D., Stepniewska, K., Thomas, N.V., Hopkins, H., Crump, J.A., Bell, D., Newton, P.N., et al. (2020) Non-Malarial Febrile Illness: A Systematic Review of Published Aetiological Studies and Case Reports from Southern Asia and South-Eastern Asia, 1980-2015. BMC Medicine, 18, Article No. 299.
https://doi.org/10.1186/s12916-020-01745-0
[5]  Mduma, E., Halidou, T., Kaboré, B., Walongo, T., Lompo, P., Museveni, J., et al. (2022) Etiology of Severe Invasive Infections in Young Infants in Rural Settings in Sub-Saharan Africa. PLOS ONE, 17, e0264322.
https://doi.org/10.1371/journal.pone.0264322
[6]  Goto, M. and Al-Hasan, M.N. (2013) Overall Burden of Bloodstream Infection and Nosocomial Bloodstream Infection in North America and Europe. Clinical Microbiology and Infection, 19, 501-509.
https://doi.org/10.1111/1469-0691.12195
[7]  Diekema, D.J., Hsueh, P.R., Mendes, R.E., Pfaller, M.A., Rolston, K.V., Sader, H.S., et al. (2019) The Microbiology of Bloodstream Infection: 20-Year Trends from the Sentry Antimicrobial Surveillance Program. Antimicrobial Agents and Chemotherapy, 63, e00355-19.
https://doi.org/10.1128/AAC.00355-19
[8]  Anderson, D.J., Moehring, R.W., Sloane, R., Schmader, K.E., Weber, D.J., Fowler Jr., V.G., et al. (2014) Bloodstream Infections in Community Hospitals in the 21st Century: A Multicenter Cohort Study. PLOS ONE, 9, e91713.
https://doi.org/10.1371/journal.pone.0091713
[9]  Robineau, O., Robert, J., Rabaud, C., Bedos, J.P., Varon, E., Pean, Y., et al. (2018) Management and Outcome of Bloodstream Infections: A Prospective Survey in 121 French Hospitals (SPA-BACT Survey). Infection and Drug Resistance, 11, 1359-1368.
https://doi.org/10.2147/IDR.S165877
[10]  Droz, N., Hsia, Y., Ellis, S., Dramowski, A., Sharland, M. and Basmaci, R. (2019) Bacterial Pathogens and Resistance Causing Community Acquired Paediatric Bloodstream Infections in Low- and Middle-Income Countries: A Systematic Review and Meta-Analysis. Antimicrobial Resistance & Infection Control, 8, 207.
https://doi.org/10.1186/s13756-019-0673-5
[11]  Obaro, S., Lawson, L., Essen, U., Ibrahim, K., Brooks, K., et al. (2011) Community Acquired Bacteremia in Young Children from Central Nigeria—A Pilot Study. BMC Infectious Diseases, 11, Article No. 137.
https://doi.org/10.1186/1471-2334-11-137
[12]  Medugu, N., Iregbu, K., Iroh Tam, P.-Y. and Obaro, S. (2018) Aetiology of Neonatal Sepsis in Nigeria, and Relevance of Group b Streptococcus: A Systematic Review. PLOS ONE, 13, e0200350.
https://doi.org/10.1371/journal.pone.0200350
[13]  Medugu, N., Iregbu, K.C., Parker, R.E., Plemmons, J., Singh, P., Audu, L.I., et al. (2017) Group B Streptococcal Colonization and Transmission Dynamics in Pregnant Women and Their Newborns in Nigeria: Implications for Prevention Strategies. Clinical Microbiology and Infection, 23, 673.e9-673.e16.
[14]  Medugu, N. and Iregbu, K.C. (2017) Trends in Profiles of Bacteria Causing Neonatal Sepsis in Central Nigeria Hospital. African Journal of Clinical and Experimental Microbiology, 18, 49-52.
https://doi.org/10.4314/ajcem.v18i1.7
[15]  Uzodimma, C.C., Njokanma, F., Ojo, O., Falase, M. and Ojo, T. (2013) Bacterial Isolates from Blood Cultures of Children with Suspected Sepsis in an Urban Hospital in Lagos: A Prospective Study Using BACTEC Blood Culture System. The Internet Journal of Pediatrics and Neonatology, 16, 1.
[16]  Shobowale, E.O., Ogunsola, F.T., Oduyebo, O.O. and Ezeaka, V.I. (2015) A Study on the Outcome of Neonates with Sepsis at the Lagos University Teaching Hospital. International Journal of Medicine and Biomedical Research, 4, 41-49.
https://doi.org/10.14194/ijmbr.4.1.6
[17]  Obaro, S.K., Hassan-Hanga, F., Olateju, E.K., Umoru, D., Lawson, L., et al. (2015) Salmonella Bacteremia among Children in Central and Northwest Nigeria, 2008-2015. Clinical Infectious Diseases, 61, S325-S331.
https://doi.org/10.1093/cid/civ745
[18]  Ombelet, S., Barbé, B., Affolabi, D., et al. (2019) Best Practices of Blood Cultures in Low- and Middle-Income Countries. Frontiers of Medicine (Lausanne), 6, Article No. 131.
https://doi.org/10.3389/fmed.2019.00131
[19]  El-din, A.A.K., Mohamed, M.A. and Gad, W.H. (2010) Prevalence of Microbial Pathogens in Blood Cultures: An Etiological and Histopathological Study. Journal of Taibah University for Science, 3, 23-32.
https://doi.org/10.1016/S1658-3655(12)60017-X
[20]  Elantamilan, D., Lyngdoh, V.W., Khyriem, A., Rajbongshi, J., Bora, I., Devi, S.T., et al. (2016) Comparative Evaluation of the Role of Single and Multiple Blood Specimens in the Outcome of Blood Cultures Using BacT/ALERT 3D (Automated) Blood Culture re System in a Tertiary Care Hospital. Indian Journal of Critical Care Medicine, 20, 530-533.
https://doi.org/10.5005/ijccm-20-9-530
[21]  Ahmad, A., Iram, S., Hussain, S. and Yusuf, N.W. (2017) Diagnosis of Paediatric Sepsis by Automated Blood Culture System and Conventional Blood Culture. Journal of Pakistan Medical Association, 67, 192-195.
[22]  Isaac, E.W., Jalo, I., Difa, A.J., Poksireni, M.R., Christianah, O., Charanci, M.S., et al. (2022) Bacterial Blood Isolates in Children: Conventional vs. Bactec Automated Blood Culture System in a Tertiary Health Centre in Gombe, North East Nigeria. Open Journal of Medical Microbiology, 12, 101-116.
https://doi.org/10.4236/ojmm.2022.123010
[23]  von Laer, A., N’Guessan, M.A., Touré, F.S., Nowak, K., Groeschner, K., Ignatius, R., Friesen, J., Tomczyk, S., Leendertz, F.H., Eckmanns, T. and Akoua-Koffi, C. (2021) Implementation of Automated Blood Culture with Quality Assurance in a Resource-Limited Setting. Frontiers in Medicine, 8, Article ID: 627513.
https://doi.org/10.3389/fmed.2021.627513
[24]  Marchello, C.S., Dale, A.P., Pisharody, S., Rubach, M.P. and Crump, J.A. (2020) A Systematic Review and Meta-Analysis of the Prevalence of Community-Onset Bloodstream Infections among Hospitalized Patients in Africa and Asia. Antimicrobial Agents and Chemotherapy, 64, e01974-19.
https://doi.org/10.1128/AAC.01974-19
[25]  Lochan, H., Pillay, V., Bamford, C., et al. (2017) Bloodstream Infections at a Tertiary Level Paediatric Hospital in South Africa. BMC Infectious Diseases, 17, Article No. 750.
https://doi.org/10.1186/s12879-017-2862-2
[26]  Henderson, K.L., Müller-Pebody, B., Johnson, A.P., Wade, A., Sharland, M. and Gilbert, R. (2013) Community-Acquired, Healthcare-Associated and Hospital- Acquired Bloodstream Infection Definitions in Children: A Systematic Review Demonstrating Inconsistent Criteria. Journal of Hospital Infection, 85, 94-105.
https://doi.org/10.1016/j.jhin.2013.07.003
[27]  WHO (2017) Global Antimicrobial Resistance Surveillance System (GLASS) Report: Early Implementation 2016-2017. World Health Organization, Geneva.
[28]  Federal Ministries of Agriculture and Rural Development, Environment and Health, Abuja Nigeria (2017) National Action Plan for Antimicrobial Resistance 2017-2022.
[29]  Product Insert—B.D, T.M BACTEC. (Becton Dickinson).
https://www.bd.com
[30]  Araujo da Silva, A.R., Jaszkowski, E., Schober, T., et al. (2020) Blood Culture Sampling Rate in Hospitalised Children as a Quality Indicator for Diagnostic Stewardship. Infection, 48, 569-575.
https://doi.org/10.1007/s15010-020-01439-y
[31]  Dramowski, A., Cotton, M.F., Rabie, H., et al. (2015) Trends in Paediatric Bloodstream Infections at a South African Referral Hospital. BMC Pediatrics, 15, Article No. 33.
https://doi.org/10.1186/s12887-015-0354-3
[32]  Gezmu, A.M., Bulabula, A.N.H., Dramowski, A., Bekker, A., Aucamp, M., et al. (2021) Laboratory-Confirmed Bloodstream Infections in Two Large Neonatal Units in Sub-Saharan Africa. International Journal of Infectious Diseases, 103, 201-207.
https://doi.org/10.1016/j.ijid.2020.11.169
[33]  Hill, P.C., Onyeama, C.O., Ikumapayi, U.N., Secka, O., Ameyaw, S., Simmonds, N., et al. (2007) Bacteraemia in Patients Admitted to an Urban Hospital in West Africa. BMC Infectious Diseases, 7, Article No. 2.
https://doi.org/10.1186/1471-2334-7-2
[34]  Karch, A., Castell, S. and Schwab, F. (2015) Proposing an Empirically Justified Reference Threshold for Blood Culture Sampling Rates in Intensive Care Units. Journal of Clinical Microbiology, 53, 648-652.
https://doi.org/10.1128/JCM.02944-14
[35]  Seifert, H., Abele-Horn, M., F ätkenheuer, G., Glück, T., Jansen, B., et al. (2007) Blutkulturdiagnostik: Sepsis, Endokarditis, Katheterinfektionen. In: Podbielski, A., Hermann, M., Kniehl, E., Mauch, H. and Russmann, H., Eds., Mikrobiologisch- Infektiologische Qualit ätsstandards (MiQ), Elsevier, München.
[36]  Scott, J.A., Berkley, J.A., Mwangi, I., et al. (2011) Relation between Falciparum Malaria and Bacteraemia in Kenyan Children: A Population-Based, Case-Control Study and a Longitudinal Study. The Lancet, 378, 1316-1323.
https://doi.org/10.1016/S0140-6736(11)60888-X
[37]  Shetty, A., Boloor, R., Antony, B., Dias, M., Pinton, H. and Kuruvilla, T. (2011) A Comparative Study of Conventional and BAGTEC 9120 Blood Culture Methods. Muller Journal of Medical Sciences and Research, 2, 8-13.
[38]  Pankaj, K. and Surinder, S. (2021) Incidence and Etiological Profile of Invasive Bloodstream Infections in All Age Groups Using Automated Bactec in Tertiary Care Hospital of North India. International Academic Journal of Applied Bio- Medical Sciences, 2, 1-6.
[39]  Obeng-Nkrumah, N., Labi, A.K., Addison, N.O., Labi, J.E. and Awuah-Mensah, G. (2016) Trends in Paediatric and Adult Bloodstream Infections at a Ghanaian Referral Hospital: A Retrospective Study. Annals of Clinical Microbiology and Antimicrobials, 15, 49.
https://doi.org/10.1186/s12941-016-0163-z
[40]  Habyarimana, T., Murenzi, D., Musoni, E., Yadufashije, C. and Niyonzima, F. (2021) Bacteriological Profile and Antimicrobial Susceptibility Patterns of Bloodstream Infection at Kigali University Teaching Hospital. Infection and Drug Resistance, 14, 699-707.
https://doi.org/10.2147/IDR.S299520
[41]  Abebe, W., Tegene, B., Feleke, T. and Sharew, B. (2021) Bacterial Bloodstream Infections and Their Antimicrobial Susceptibility Patterns in Children and Adults in Ethiopia: A 6-Year Retrospective Study. Clinical Laboratory, 67, 2453-2461.
https://doi.org/10.7754/Clin.Lab.2021.210224
[42]  Popoola, O., Kehinde, A., Ogunleye, V., Adewusi, O.J., Toy, T., et al. (2019) Bacteremia among Febrile Patients Attending Selected Healthcare Facilities in Ibadan, Nigeria. Clinical Infectious Diseases, 69, S466-S473.
https://doi.org/10.1093/cid/ciz516
[43]  Idris, U.A., Robinson, W.D., Faruk, J.A. and Gwarzo, G.D. (2018) Prevalence of Bacteremia among Febrile Children with Severe Malnutrition in North Western Nigeria. Nigerian Journal of General Practice, 16, 25-29.
https://doi.org/10.4103/NJGP.NJGP_6_17
[44]  Bello, N., Dawakin Kudu, A.T., Adetokun, A.B., Taura, D.W., Jobbi, Y.D., Umar, M. and Yusuf, I. (2018) Characterization and Antimicrobial Susceptibility Profile of Bacteraemia Causing Pathogens Isolated from Febrile Children with and without Sickle Cell Disease in Kano, Nigeria. Mediterranean Journal of Hematology and Infectious Diseases, 10, e2018016.
https://doi.org/10.4084/mjhid.2018.016
[45]  Obadare, T., Adejuyigbe, E., Adeyemo, A. and Aboderin, O. (2022) Characterization of Neonatal Sepsis in a Tertiary Hospital in Nigeria. International Journal of Infectious Diseases, 116, S18.
https://doi.org/10.1016/j.ijid.2021.12.043
[46]  Ibrahim, H.A., Yakubu, Y.M., Farouk, A.G., Ambe, P. and Gadzama, G.B. (2021) Profile of Bacterial Pathogens Causing Infections in Children with Sickle Cell Anaemia in Maiduguri. Nigerian Postgraduate Medical Journal, 28, 218-224.
https://doi.org/10.4103/npmj.npmj_531_21
[47]  Lamy, B., Dargière, S., Arendrup, M.C., Parienti, J.J. and Tattevin, P. (2016) How to Optimize the Use of Blood Cultures for the Diagnosis of Bloodstream Infections? A State of the Art. Frontiers in Microbiology, 7, Article No. 697.
https://doi.org/10.3389/fmicb.2016.00697
[48]  O’Hagan, S., Nelson, P., Speirs, L., Moriarty, P. and Mallett, P. (2021) How to Interpret a Paediatric Blood Culture. Archives of Disease in Childhood: Education and Practice Edition, 106, 244-250.
https://doi.org/10.1136/archdischild-2020-321121
[49]  Kee, P.P.L., Chinnappan, M., Nair, A., et al. (2016) Diagnostic Yield of Timing Blood Culture Collection Relative to Fever. The Pediatric Infectious Disease Journal, 35, 846-850.
https://doi.org/10.1097/INF.0000000000001189
[50]  Brown, B., Dada-Adegbola, H., Trippe, C. and Olopade, O. (2017) Prevalence and Etiology of Bacteremia in Febrile Children with Sickle Cell Disease at a Nigeria Tertiary Hospital. Mediterranean Journal of Hematology and Infectious Diseases, 9, e2017039.
https://doi.org/10.4084/mjhid.2017.039
[51]  Federal Ministries of Agriculture and Rural Development, Environment and Health, Abuja Nigeria (2017) Antibiotic Use and Resistance in Nigeria. Situation Analysis and Recommendations.
[52]  Nichols, C., Cruz Espinoza, L.M., Von Kalckreuth, V., Aaby, P., Ahmed El Tayeb, M. and Ali, M. (2015) Bloodstream Infections and Frequency of Pretreatment Associated with Age and Hospitalization Status in Sub-Saharan Africa. Clinical Infectious Diseases, 61, S372-S379.
https://doi.org/10.1093/cid/civ730
[53]  Fleischmann-Struzek, C., Goldfarb, D.M., Schlattmann, P., Schlapbach, L.J., Reinhart, K. and Kissoon, N. (2018) The Global Burden of Paediatric and Neonatal Sepsis: A Systematic Review. The Lancet Respiratory Medicine, 63, 223-230.
https://doi.org/10.1016/S2213-2600(18)30063-8
[54]  Rudd, K.E., Johnson, S.C., Agesa, K.M., et al. (2020) Global, Regional, and National Sepsis Incidence and Mortality, 1990-2017: Analysis for the Global Burden of Disease Study. The Lancet, 395, 200-211.
https://doi.org/10.1016/S0140-6736(19)32989-7
[55]  Deku, J.G., Dakorah, M.P., Lokpo, S.Y., Orish, V.N., Ussher, F.A., Kpene, G.E., et al. (2019) The Epidemiology of Bloodstream Infections and Antimicrobial Susceptibility Patterns: A Nine-Year Retrospective Study at St. Dominic Hospital, Akwatia, Ghana. Journal of Tropical Medicine, 2019, Article ID: 6750864.
https://doi.org/10.1155/2019/6750864
[56]  Crichton, H., O’Connell, N., Rabie, H., Whitelaw, A.C. and Dramowski, A. (2018) Neonatal and Paediatric Bloodstream Infections: Pathogens, Antimicrobial Resistance Patterns and Prescribing Practice at Khayelitsha District Hospital, Cape Town, South Africa. South African Medical Journal, 108, 99-104.
http://www.scielo.org.za/scielo.php?script=sci_arttext&pid=S0256-95742018000200011&lng=en
https://doi.org/10.7196/SAMJ.2018.v108i2.12601
[57]  Negussie, A., Mulugeta, G., Bedru, A., et al. (2015) Bacteriological Profile and Antimicrobial Susceptibility Pattern of Blood Culture Isolates among Septicemia Suspected Children in Selected Hospitals Addis Ababa, Ethiopia. International Journal of Biological & Medical Research, 6, 4709-4717.
[58]  Tariq, T.M. (2014) Bacteriologic Profile and Antibiogram of Blood Culture Isolates from a Children’s Hospital in Kabul. Journal of the College of Physicians and Surgeons Pakistan, 24, 396-399.
[59]  Shrestha, S., Amatya, R., Shrestha, R.K. and Shrestha, R. (2014) Frequency of Blood Culture Isolates and Their Antibiogram in a Teaching Hospital. Journal of Nepal Medical Association, 52, 692-696.
https://doi.org/10.31729/jnma.2295
[60]  Isendahl, J., Manjuba, C., Rodrigues, A., Xu, W., Henriques-Norman Giske, C.G., et al. (2014) Prevalence of Community-Acquired Bacteraemia in Guinea-Bissau: An Observational Study. BMC Infectious Diseases, 14, Article No. 3859.
https://doi.org/10.1186/s12879-014-0715-9
[61]  Godfrey, E., et al. (2022) Aetiology, Antimicrobial Susceptibility and Outcome of Children with Sepsis, Admitted at Muhimbili National Hospital, Dar es Salaam. Pan African Medical Journal, 42, Article No. 167.
[62]  Katoch, P., Sood, A. and Singh, S. (2021) Staphylococcal Positivity and Sensitivity in Invasive Bloodstream Infections Using Automated Bactec in Tertiary Care Hospital of North India. International Journal of Current Microbiology and Applied Sciences, 10, 578-584.
https://doi.org/10.20546/ijcmas.2021.1008.068
[63]  Secka, F., Herberg, J.A., Sarr, I., et al. (2019) Bacteremia in Childhood Life- Threatening Infections in Urban Gambia: EUCLIDS in West Africa. Open Forum Infectious Diseases, 6, ofz332.
https://doi.org/10.1093/ofid/ofz332
[64]  Ombelet, S., Kpossou, G., Kotchare, C., Agbobli, E., Sogbo, F., Massou, F., Lagrou, K., et al. (2022) Blood Culture Surveillance in a Secondary Care Hospital in Benin: Epidemiology of Bloodstream Infection Pathogens and Antimicrobial Resistance. BMC Infectious Diseases, 22, Article No. 119.
https://doi.org/10.1186/s12879-022-07077-z
[65]  Cohen, B., Choi, Y.J., Hyman, S., Furuya, E.Y., Neidell, M. and Larson, E. (2013) Gender Differences in Risk of Bloodstream and Surgical Site Infections. Journal of General Internal Medicine, 28, 1318-1325.
https://doi.org/10.1007/s11606-013-2421-5
[66]  Humphreys, H., Fitzpatick, F. and Harvey, B.J. (2015) Gender Differences in Rates of Carriage and Bloodstream Infection Caused by Methicillin-Resistant Staphylococcus aureus: Are They Real, Do They Matter and Why? Clinical Infectious Diseases, 61, 1708-1714.
https://doi.org/10.1093/cid/civ576
[67]  Hamer, D.H., Darmstadt, G.L., Carlin, J.B., Zaidi, A.K., Yeboah-Antwi, K., Saha, S.K., et al. (2015) Etiology of Bacteremia in Young Infants in Six Countries. The Pediatric Infectious Disease Journal, 34, e1-e8.
https://doi.org/10.1097/INF.0000000000000549
[68]  Dharmapalan, D., Shet, A., Yewale, V. and Sharland, M. (2017) High Reported Rates of Antimicrobial Resistance in Indian Neonatal and Pediatric Blood Stream Infections. Journal of the Pediatric Infectious Diseases Society, 6, e62-e68.
https://doi.org/10.1093/jpids/piw092
[69]  Adisa, A.K., Hassan-Hanga, F. and Oyelami, O.A. (2017) Prevalence and Pattern of Bacteraemia among HIV-Infected Under-Five Children in a Tertiary Hospital in Kano, Nigeria. Nigerian Journal of Paediatrics, 44, 26-31.
https://doi.org/10.4314/njp.v44i1.5
[70]  Nwadioha, I., Odimayo, M.S., Omotayo, J., Olu Taiwo, A. and Olabiyi, E. (2015) A Retrospective Cross Sectional Study of Blood Culture Results in a Tertiary Hospital, Ekiti, Nigeria. Open Journal of Medical Microbiology, 5, 202-208.
https://doi.org/10.4236/ojmm.2015.54025
[71]  Kingsley, O.C., Ifeanyi, A.O., Edet, A.E. and Smart, O.C. (2013) Bacteriologic Profile and Antibiotic Susceptibility Pattern of Suspected Septicaemic Patients in Uyo, Nigeria. Research Journal of Medical Sciences, 7, 35-39.
[72]  Tumuhamye, J., Sommerfelt, H., Bwanga, F., Ndeezi, G., Mukunya, D., Napyo, A., et al. (2020) Neonatal Sepsis at Mulago National Referral Hospital in Uganda: Etiology, Antimicrobial Resistance, Associated Factors and Case Fatality Risk. PLOS ONE, 15, e0237085.
https://doi.org/10.1371/journal.pone.0237085
[73]  Okomo, U., Akpalu, E.N.K., Le Doare, K., Roca, A., et al. (2019) Aetiology of Invasive Bacterial Infection and Antimicrobial Resistance in Neonates in Sub-Saharan Africa: A Systematic Review and Meta-Analysis in Line with the STROBE-NI Reporting Guidelines. The Lancet Infectious Diseases, 19, 1219-1234.
https://doi.org/10.1016/S1473-3099(19)30414-1
[74]  Agyeman, P.K., Schlapbach, L.J., Giannoni, E., et al. (2017) Epidemiology of Blood Culture-Proven Bacterial Sepsis in Children in Switzerland: A Population-Based Cohort Study. The Lancet Child & Adolescent Health, 1, 124-133.
https://doi.org/10.1016/S2352-4642(17)30010-X
[75]  (2017) Global Antimicrobial Resistance Surveillance System (GLASS) Report: Early Implementation 2016-2017. World Health Organization, Geneva.
[76]  GBD 2015 Child Mortality Collaborators (2016) Global, Regional, National, and Selected Subnational Levels of Stillbirths, Neonatal, Infant, and Under-5 Mortality, 1980-2015: A Systematic Analysis for the Global Burden of Disease Study 2015. The Lancet, 388, 1725-1774.
https://doi.org/10.1016/S0140-6736(16)31575-6
[77]  Lewis, J.M., Feasey, N.A. and Rylance, J. (2019) Aetiology and Outcomes of Sepsis in Adults in Sub-Saharan Africa: A Systematic Review and Meta-Analysis. Critical Care, 23, 212.
https://doi.org/10.1186/s13054-019-2501-y
[78]  Preziosi, A.M., Zimba, T.F., Lee, K., Tomas, M., Kinlin, S., et al. (2015) A Prospective Observational Study of Bacteraemia in Adults Admitted to an Urban Mozambican Hospital. South African Medical Journal, 105, 370-374.
https://doi.org/10.7196/SAMJ.8780
[79]  Legese, M.H., Asrat, D., Swedberg, G., et al. (2022) Sepsis: Emerging Pathogens and Antimicrobial Resistance in Ethiopian Referral Hospitals. Antimicrobial Resistance & Infection Control, 11, Article No. 83.
https://doi.org/10.1186/s13756-022-01122-x
[80]  Kajumbula, H., Fujita, A., Mbabazi, O., Najjuka, C., Izale, C., Akampurira, A., et al. (2018) Antimicrobial Drug Resistance in Blood Culture Isolates at a Tertiary Hospital, Uganda. Emerging Infectious Diseases, 24, 174-175.
https://doi.org/10.3201/eid2401.171112
[81]  Kimmig, A., Hagel, S., Weis, S., Bahrs, C., Loffler, B. and Plets, M.W. (2021) Management of Staphylococcus aureus Blood Stream Infections. Frontiers in Medicine, 7, Article ID: 616524.
https://doi.org/10.3389/fmed.2020.616524
[82]  Go, J.R., Challener, D., Campioli, C.C., et al. (2022) Clinical Significance of Staphylococcus aureus in a Single Positive Blood Culture Bottle. Open Forum Infectious Diseases, 9, ofab6422.
https://doi.org/10.1093/ofid/ofab642
[83]  Mordi, R.M., Yusuf, E.O., Onemu, S.O., Igeleke, C.L. and Odjadjare, E.E. (2013) The Prevalence of Alcaligenes faecalis in Bacteremia, Meningitis and Wound Sepsis in a Tertiary Health Care Institution in Western Part of Nigeria. International Journal of Biotechnology, 2, 123-129.
[84]  Omoregie, R., Aye Egbe, C., Dirisu, J. and Ogefere, H.O. (2013) Microbiology of Neonatal Septicemia in a Tertiary Hospital in Benin City, Nigeria. Biomarkers and Genomic Medicine, 5, 142-146.
https://doi.org/10.1016/j.bgm.2013.06.001
[85]  Iregbu, K.C., Zubair, K.O., Modibbo, I.F., Aigbe, A.I., Sonibare, S.A. and Ayoola, O.M. (2013) Neonatal Infections Caused by Escherichia coli at the National Hospital, Abuja: A Three-Year Retrospective Study. African Journal of Clinical and Experimental Microbiology, 14, 95-100.
https://doi.org/10.4314/ajcem.v14i2.9
[86]  Huang, C. (2020) Extensively Drug-Resistant Alcaligenes faecalis Infection. BMC Infectious Diseases, 20, Article No. 833.
https://doi.org/10.1186/s12879-020-05557-8
[87]  Duru, C., Olanipekun, G., Odili, V., Kocmich, N., Rezac, A., Ajose, T.O., et al. (2020) Molecular Characterization of Invasive Enterobacteriaceae from Pediatric Patients in Central and Northwestern Nigeria. PLOS ONE, 15, e0230037.
https://doi.org/10.1371/journal.pone.0230037
[88]  Acquah, S.E., Quaye, L., Sagoe, K., Ziem, J.B., Bromberger, P.I. and Ampomsem, A. (2013) Susceptibility of Bacterial Etiological Agents to Commonly-Used Antimicrobial Agents in Children with Sepsis at the Tamale Teaching Hospital. BMC Infectious Diseases, 13, Article No. 89.
https://doi.org/10.1186/1471-2334-13-89
[89]  Antonaras, S. and Adura, M.I. (2018) Citrobacter Species. In: Long, S.S., Prober, C.G. and Fischer, M., Eds., Principles and Practice of Paediatric Infectious Diseases, 5th Edition, Elsevier, Philadelphia, 827-829.
https://doi.org/10.1016/B978-0-323-40181-4.00141-9
[90]  Gilchrist, J.J., Rautanen, A., Fairfax, B.P., Mills, T.C., Naranbhai, V., Trochet, H., et al. (2018) Risk of Nontyphoidal Salmonella Bacteraemia in African Children Is Modified by STAT4. Nature Communications, 9, Article No. 1014.
https://doi.org/10.1038/s41467-017-02398-z
[91]  Uche, I.V., MacLennan, C.A. and Saul, A. (2017) A Systematic Review of the Incidence, Risk Factors and Case Fatality Rates of Invasive Nontyphoidal Salmonella (iNTS) Disease in Africa (1966 to 2014). PLOS Neglected Tropical Diseases, 11, e0005118.
https://doi.org/10.1371/journal.pntd.0005118
[92]  Ogunkunle, T.O., Abdulkadir, M.B., Katibi, O.S., Bello, S.O., Raheem, R.A. and Olaosebikan, R. (2020) Pediatric Blood Culture Isolates and Antibiotic Sensitivity Pattern in a Nigerian Tertiary Hospital. Nigerian Journal of Medicine, 29, 261-264.
https://doi.org/10.4103/NJM.NJM_55_20
[93]  Marks, F., von Kalckreuth, V., Aaby, P., Adu-Sarkodie, Y., El Tayeb, M.A., Ali, M., et al. (2017) Incidence of Invasive Salmonella Disease in Sub-Saharan Africa: A Multicentre Population-Based Surveillance Study. The Lancet Global Health, 5, e310-e323.
https://doi.org/10.1016/S2214-109X(17)30022-0
[94]  Brooks, L.R.K. and Mias, G.I. (2018) Streptococcus pneumoniae’s Virulence and Host Immunity: Aging, Diagnostics, and Prevention. Frontiers in Immunology, 9, Article No. 1366.
https://doi.org/10.3389/fimmu.2018.01366
[95]  WHO Regional Office for Africa (2021) Antimicrobial Resistance in the WHO African Region: A Systematic Literature Review. WHO Regional Office for Africa, Brazzaville.
[96]  Ventola, C.L. (2015) The Antibiotic Resistance Crisis: Part 1: Causes and Threats. Pharmacology & Therapeutics, 40, 277-283.
[97]  Manga, M.M., Michael, G.O., Julde, A.A., Mohammed, G., Hassan, U.M., Ibrahim, M., et al. (2021) Phenotypic Detection of Methicillin and Inducible Clindamycin Resistant Staphylococcus aureus: An Effort to Combat Antimicrobial Resistance and Improve Patient Safety in Gombe, Nigeria. Annals of Basic and Medical Sciences, 2, 52-56.
https://doi.org/10.51658/ABMS.202121.3
[98]  Kariuki, S., Kering, K., Wairimu, C., Onsare, R. and Mbae, C. (2022) Antimicrobial Resistance Rates and Surveillance in Sub-Saharan Africa: Where Are We Now? Infection and Drug Resistance, 15, 3589-3609.
https://doi.org/10.2147/IDR.S342753
[99]  Manga, M.M., Ibrahim, M., Isaac, W.E., Hassan, M.D., Mohammed, G., Hassan, U.M., et al. (2021) Antibiogram of Pseudomonas Species: An Important Tool to Combat Antibiotic Resistance for Patient Safety in Gombe, Nigeria. African Journal of Clinical and Experimental Microbiology, 22, 279-283.
https://doi.org/10.4314/ajcem.v22i2.21
[100]  Bernabé, K.J., Langendorf, C., Fordnronat, J.-B. and Murphy, R.A. (2017) Antimicrobial Resistance in West Africa: A Systematic Review and Meta-Analysis. International Journal of Antimicrobial Agents, 50, 629-639.
https://doi.org/10.1016/j.ijantimicag.2017.07.002
[101]  Williams, P.C.M., Isaacs, D. and Berkley, J.A. (2018) Antimicrobial Resistance among Children in Sub-Saharan Africa. The Lancet Infectious Diseases, 18, e33-e44.
https://doi.org/10.1016/S1473-3099(17)30467-X
[102]  Wen, S.C.H., Ezure, Y., Rolley, L., Spurling, G., Lau, C.L., Riaz, S., et al. (2021) Gram-Negative Neonatal Sepsis in Low- and Lower-Middle-Income Countries and WHO Empirical Antibiotic Recommendations: A Systematic Review and Meta- Analysis. PLOS Medicine, 18, e1003787.
https://doi.org/10.1371/journal.pmed.1003787
[103]  Varma, J.K., Oppong-Otoo, J., Ondoa, P., et al. (2018) Africa Centres for Disease Control and Prevention’s Framework for Antimicrobial Resistance Control in Africa. African Journal of Laboratory Medicine, 7, Article No. 830.
https://doi.org/10.4102/ajlm.v7i2.830

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413