In this manuscript a comparative study on Bi2O3/polystyrene and Bi2O3/PVDF composites has been executed via analysis of structural, bonding, surface morphology and dielectric response of composites for energy storage. The composites have been synthesized using solution cast method by varying concentrations of Bi2O3 (BO = 1 - 5 mw%) into polystyrene (PS) and polyvinylidene fluoride (PVDF) polymers respectively. X-ray diffraction confirms the generation of crystallinity, Fourier transform infrared (FT-IR) spectroscopy confirms bonding behavior and scanning electron microscopy (SEM) confirms uniform distribution of Bi2O3 (BO) in PS and PVDF polymers. Impedance spectroscopy has been employed for determination of dielectric response of the fabricated composites. The dielectric constant has been found to be increased as 1.4 times of pristine PS to BO5%PS95% composites and 1.8 times of pristine PVDF to BO5%PVDF95% composites respectively. These high dielectric composite electrodes are useful for flexible energy storage devices.
References
[1]
Wang, D., Huang, M.Y., Zha, J.-W., Zhao, J., Dang, Z.-M. and Cheng, Z.Y. (2014) Dielectric Properties of Polystyrene Based Composites Filled with Core-Shell Ba-TiO3/Polystyrene Hybrid Nanoparticles. IEEE Transactions on Dielectrics and Electrical Insulation, 21, 1438-1445. https://doi.org/10.1109/TDEI.2013.004329
[2]
Barber, P., Balasubramanian, S., Anguchamy, Y., Gong, S., Wibowo, A., Gao, H., Ploehn, H. and Loye, H. (2009) Polymer Composite and Nanocomposite Dielectric Materials for Pulse Power Energy Storage. Materials, 2, 1697-1733. https://doi.org/10.3390/ma2041697
[3]
Mao, X., Guo, W.F., Li. C.Z., Yang, J., Du, L., et al. (2017) Low-Temperature Synthesis of Polyimide/Poly (Vinylidene Fluoride) Composites with Excellent Dielectric Property. Materials Letters, 5, 193-213. https://doi.org/10.1016/j.matlet.2017.01.065
[4]
Ramadan, K.S., Sameoto, D. and Evoy, S. (2014) A Review of Piezoelectric Polymers as Functional Materials for Electromechanical Transducers. Smart Materials and Structures, 23, Article ID: 033001. https://doi.org/10.1088/0964-1726/23/3/033001
[5]
Samanta, B., Kumar, P., Nanda, D. and Sahu, R. (2019) Dielectric Properties of Epoxy-Al Composites for Embedded Capacitor Applications. Result in Physics, 14, Article ID: 102384. https://doi.org/10.1016/j.rinp.2019.102384
[6]
Rao, Y., Ogitani, S., Kohl, P. and Wong, C.P. (2002) Novel Polymer-Ceramic Nanocomposite Based on High Dielectric Constant Epoxy Formula for Embedded Capacitor Application. Journal of Applied Polymer Science, 83, 1084-1090. https://doi.org/10.1002/app.10082
[7]
Subodh, G., Deepu, V., Mohanan, P. and Sebastian, M. (2009) Dielectric Response of High Permittivity Polymer Ceramic Composite with Low Loss Tangent. Applied Physics Letters, 95, Article ID: 062903. https://doi.org/10.1063/1.3200244
[8]
Xiao, M., Sun, L., Liu, J., Li, Y. and Gong, K. (2002) Synthesis and Properties of Polystyrene/Graphite Nanocomposites. Polymer, 43, 2245-2248. https://doi.org/10.1016/S0032-3861(02)00022-8
[9]
Li, N., Xiao, C.F., An, S.L. and Hu, X.Y. (2010) Preparation and Properties of PVDF/PVA Hollow Fiber Membranes. Desalination, 250, 530-537. https://doi.org/10.1016/j.desal.2008.10.027
[10]
Zhang, T., Huang, W., Zhang, N., Huang, T., Yang, J. and Wang, Y. (2017) Grafting of Polystyrene onto Reduced Graphene Oxide by Emulsion Polymerization for Dielectric Polymer Composites: High Dielectric Constant and Low Dielectric Loss Tuned by Varied Grafting Amount of Polystyrene. European Polymer Journal, 94, 196-207. https://doi.org/10.1016/j.eurpolymj.2017.07.008
[11]
Yang, M., Zhao, H., Hu, C., Haghi-Ashtiani, P., He, D., Dang, Z.M. and Bai, J. (2018) Largely Enhanced Dielectric Constant of PVDF Nanocomposites through a Core-Shell Strategy. Physical Chemistry Chemical Physics, 20, 2777-2786. https://doi.org/10.1039/C7CP06510H
[12]
Chen, H.J., Han, S., Liu, C., et al. (2016) Investigation of PVDF-TrFE Composite with Nanofillers for Sensitivity Improvement. Sensors and Actuators A: Physical, 245, 135-139. https://doi.org/10.1016/j.sna.2016.04.056
[13]
Ataur Rahman, M. and Chung, G.S. (2013) Synthesis of PVDF-Graphene Nanocomposites and Their Properties. Journal of Alloys and Compounds, 581, 724-730. https://doi.org/10.1016/j.jallcom.2013.07.118
[14]
Yang, Z., Wang, J., Hu, Y., Deng, C., Zhu, K. and Qiu, J. (2020) Simultaneously Improved Dielectric Constant and Breakdown Strength of PVDF/Nd-BaTiO3 Fiber Composite Films via the Surface Modification and Subtle Filler Content Modulation. Composites Part A: Applied Science and Manufacturing, 128, Article ID: 105675. https://doi.org/10.1016/j.compositesa.2019.105675
[15]
CRC Handbook of Chemistry and Physics. 102nd Edition, CRC Press, Florida.
[16]
Tezel, F.M. and Kariper, İ.A. (2017) Synthesis, Surface Tension, Optical and Dielectric Properties of Bismuth Oxide Thin Film. Materials Science-Poland, 35, 87-93. https://doi.org/10.1515/msp-2017-0020
Cheng, K.C., Lin, C.M., Wang, S.F., Lin S.T. and Yang, C.F. (2007) Dielectric Properties of Epoxy Resin-Barium Titanate Composites at High Frequency. Materials Letters, 61, 757-760. https://doi.org/10.1016/j.matlet.2006.05.061
[19]
Cho, S.-C., Lee, J.-Y., Hyun, J.-G. and Paik, K.-W. (2004) Study on Epoxy/BaTiO3 Composite Embedded Capacitor Films (ECFs) for Organic Substrate Applications. Materials Science and Engineering: B, 110, 233-239. https://doi.org/10.1016/j.mseb.2004.01.022
[20]
Hu, T., Juuti, J., Jantunen, H., et al. (2007) Dielectric Properties of BST/Polymer Composite. Journal of the European Ceramic Society, 27, 3997-4001. https://doi.org/10.1016/j.jeurceramsoc.2007.02.082
[21]
Sindhu, S., Jabeen, F.M. and Niveditha, C.V. (2015) α-Bi2O3 Photoanode in DSSC and Study of the Electrode-Electrolyte Interface. RSC Advances, 5, 78299-78305. https://doi.org/10.1039/C5RA12760B
[22]
Patterson, A.L. (1939) The Scherrer Formula for X-Ray Particle Size Determination. Physical Review Journals Archive, 56, 978-982. https://doi.org/10.1103/PhysRev.56.978
[23]
Huang, G., Xu, J.Q., Geng, P.Y. and Li, J.H. (2020) Carrier Flotation of Low-Rank Coal with Polystyrene. Minerals, 10, Article 452. https://doi.org/10.3390/min10050452
[24]
Ibtisam, A., Mohammad, H.J., Muhammad, Y. and Haider, S. (2015) Facile Formation of β Poly (Vinylidene Fluoride) Films Using the Short Time Annealing Process. Advances in Environmental Biology, 9, 20-27.
[25]
Yang, Q., Li, Y.X., Yin, Q., Wang, P. and Cheng, Y.B. (2002) Hydrothermal Synthesis of Bismuth Oxide Needles. Materials Letters, 55, 46-49. https://doi.org/10.1016/S0167-577X(01)00617-6
[26]
Yadav, D.K., Yadav, A., Meena, K., Devat, K, Mishra, J.K., Sahu, R., Jain, S.K., Dixit, A., Srivastava, N., Patodia, T., Jakhar, N. and Tripathi, B. (2021) Study of CNT Intercalated Bi2O3/PVDF Composite for Super Capacitors Applications. Macromolecular Symposia, 399, Article ID: 2100022. https://doi.org/10.1002/masy.202100022
[27]
Sahu, R., Patodia, T., Yadav, D., Jain, S.K. and Tripathi, B. (2022) Visible-Light Induced Photo Catalytic Response of MWCNTs-CdS Composites via Efficient Interfacial Charge Transfer. Materials Letters: X, 13, Article ID: 100116. https://doi.org/10.1016/j.mlblux.2021.100116
[28]
Vinodh, R., Abidov, A., Peng, M.M., Babu, C.M., Palanichamy, M., et al. (2015) A New Strategy to Synthesize Hypercross-Linked Conjugated Polystyrene and Its Application towards CO2 Sorption. Fibers and Polymers, 16, 1458-1467. https://doi.org/10.1007/s12221-015-5151-y
[29]
Xia, W.M. and Zhang, Z.C. (2018) PVDF-Based Dielectric Polymers and Their Applications in Electronic Materials. IET Nanodielectrics, 1, 17-31. https://doi.org/10.1049/iet-nde.2018.0001
[30]
Yadav, A., Mishra, J., Sahu, R., Jain, S.K., Dixit, S., Agarwal, G., Jakhar, N. and Tripathi, B. (2021) Effect of BaTiO3 Nanofillers on the Energy Storage Performance of Polymer Nanocomposites. Macromolecular Symposia, 399, Article ID: 2100024. https://doi.org/10.1002/masy.202100024
[31]
Matysiak, V. (2022) Synthesis of 1D Bi2O3 Nanostructures from Hybrid Electro Spun Fibrous Mats and Their Morphology, Structure, Optical and Electrical Properties. Scientific Reports, 12, Article No. 4046. https://doi.org/10.1038/s41598-022-07830-z